Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmtpos Structured version   Visualization version   GIF version

Theorem reldmtpos 7512
 Description: Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)

Proof of Theorem reldmtpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4924 . . . . 5 ∅ ∈ V
21eldm 5459 . . . 4 (∅ ∈ dom 𝐹 ↔ ∃𝑦𝐹𝑦)
3 vex 3354 . . . . . . 7 𝑦 ∈ V
4 brtpos0 7511 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
53, 4ax-mp 5 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
6 0nelxp 5283 . . . . . . . 8 ¬ ∅ ∈ (V × V)
7 df-rel 5256 . . . . . . . . 9 (Rel dom tpos 𝐹 ↔ dom tpos 𝐹 ⊆ (V × V))
8 ssel 3746 . . . . . . . . 9 (dom tpos 𝐹 ⊆ (V × V) → (∅ ∈ dom tpos 𝐹 → ∅ ∈ (V × V)))
97, 8sylbi 207 . . . . . . . 8 (Rel dom tpos 𝐹 → (∅ ∈ dom tpos 𝐹 → ∅ ∈ (V × V)))
106, 9mtoi 190 . . . . . . 7 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom tpos 𝐹)
111, 3breldm 5467 . . . . . . 7 (∅tpos 𝐹𝑦 → ∅ ∈ dom tpos 𝐹)
1210, 11nsyl3 135 . . . . . 6 (∅tpos 𝐹𝑦 → ¬ Rel dom tpos 𝐹)
135, 12sylbir 225 . . . . 5 (∅𝐹𝑦 → ¬ Rel dom tpos 𝐹)
1413exlimiv 2010 . . . 4 (∃𝑦𝐹𝑦 → ¬ Rel dom tpos 𝐹)
152, 14sylbi 207 . . 3 (∅ ∈ dom 𝐹 → ¬ Rel dom tpos 𝐹)
1615con2i 136 . 2 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom 𝐹)
17 vex 3354 . . . . . 6 𝑥 ∈ V
1817eldm 5459 . . . . 5 (𝑥 ∈ dom tpos 𝐹 ↔ ∃𝑦 𝑥tpos 𝐹𝑦)
19 relcnv 5644 . . . . . . . . . . 11 Rel dom 𝐹
20 df-rel 5256 . . . . . . . . . . 11 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
2119, 20mpbi 220 . . . . . . . . . 10 dom 𝐹 ⊆ (V × V)
2221sseli 3748 . . . . . . . . 9 (𝑥dom 𝐹𝑥 ∈ (V × V))
2322a1i 11 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ (V × V)))
24 elsni 4333 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = ∅)
2524breq1d 4796 . . . . . . . . . . 11 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
261, 3breldm 5467 . . . . . . . . . . . . 13 (∅𝐹𝑦 → ∅ ∈ dom 𝐹)
2726pm2.24d 148 . . . . . . . . . . . 12 (∅𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
285, 27sylbi 207 . . . . . . . . . . 11 (∅tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
2925, 28syl6bi 243 . . . . . . . . . 10 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V))))
3029com3l 89 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V))))
3130impcom 394 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V)))
32 brtpos2 7510 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦)))
333, 32ax-mp 5 . . . . . . . . . . 11 (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦))
3433simplbi 485 . . . . . . . . . 10 (𝑥tpos 𝐹𝑦𝑥 ∈ (dom 𝐹 ∪ {∅}))
35 elun 3904 . . . . . . . . . 10 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↔ (𝑥dom 𝐹𝑥 ∈ {∅}))
3634, 35sylib 208 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (𝑥dom 𝐹𝑥 ∈ {∅}))
3736adantl 467 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ {∅}))
3823, 31, 37mpjaod 847 . . . . . . 7 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → 𝑥 ∈ (V × V))
3938ex 397 . . . . . 6 (¬ ∅ ∈ dom 𝐹 → (𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
4039exlimdv 2013 . . . . 5 (¬ ∅ ∈ dom 𝐹 → (∃𝑦 𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
4118, 40syl5bi 232 . . . 4 (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ dom tpos 𝐹𝑥 ∈ (V × V)))
4241ssrdv 3758 . . 3 (¬ ∅ ∈ dom 𝐹 → dom tpos 𝐹 ⊆ (V × V))
4342, 7sylibr 224 . 2 (¬ ∅ ∈ dom 𝐹 → Rel dom tpos 𝐹)
4416, 43impbii 199 1 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∨ wo 834  ∃wex 1852   ∈ wcel 2145  Vcvv 3351   ∪ cun 3721   ⊆ wss 3723  ∅c0 4063  {csn 4316  ∪ cuni 4574   class class class wbr 4786   × cxp 5247  ◡ccnv 5248  dom cdm 5249  Rel wrel 5254  tpos ctpos 7503 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-fv 6039  df-tpos 7504 This theorem is referenced by:  dmtpos  7516
 Copyright terms: Public domain W3C validator