![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmpsr | Structured version Visualization version GIF version |
Description: The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmpsr | ⊢ Rel dom mPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-psr 19571 | . 2 ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), ( ∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx), 𝑟〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | |
2 | 1 | reldmmpt2 6918 | 1 ⊢ Rel dom mPwSer |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 {crab 3065 Vcvv 3351 ⦋csb 3682 ∪ cun 3721 {csn 4316 {ctp 4320 〈cop 4322 class class class wbr 4786 ↦ cmpt 4863 × cxp 5247 ◡ccnv 5248 dom cdm 5249 ↾ cres 5251 “ cima 5252 Rel wrel 5254 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 ∘𝑓 cof 7042 ∘𝑟 cofr 7043 ↑𝑚 cmap 8009 Fincfn 8109 ≤ cle 10277 − cmin 10468 ℕcn 11222 ℕ0cn0 11494 ndxcnx 16061 Basecbs 16064 +gcplusg 16149 .rcmulr 16150 Scalarcsca 16152 ·𝑠 cvsca 16153 TopSetcts 16155 TopOpenctopn 16290 ∏tcpt 16307 Σg cgsu 16309 mPwSer cmps 19566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-rel 5256 df-dm 5259 df-oprab 6797 df-mpt2 6798 df-psr 19571 |
This theorem is referenced by: psrbas 19593 psrelbas 19594 psrplusg 19596 psraddcl 19598 psrmulr 19599 psrmulcllem 19602 psrvscafval 19605 psrvscacl 19608 resspsrbas 19630 resspsradd 19631 resspsrmul 19632 mplval 19643 opsrle 19690 opsrbaslem 19692 opsrbaslemOLD 19693 psrbaspropd 19820 psropprmul 19823 |
Copyright terms: Public domain | W3C validator |