![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version |
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
Ref | Expression |
---|---|
reldmopsr | ⊢ Rel dom ordPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opsr 19574 | . 2 ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) | |
2 | 1 | reldmmpt2 6917 | 1 ⊢ Rel dom ordPwSer |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∨ wo 826 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ∃wrex 3061 {crab 3064 Vcvv 3349 [wsbc 3585 ⦋csb 3680 ⊆ wss 3721 𝒫 cpw 4295 {cpr 4316 〈cop 4320 class class class wbr 4784 {copab 4844 ↦ cmpt 4861 × cxp 5247 ◡ccnv 5248 dom cdm 5249 “ cima 5252 Rel wrel 5254 ‘cfv 6031 (class class class)co 6792 ↑𝑚 cmap 8008 Fincfn 8108 ℕcn 11221 ℕ0cn0 11493 ndxcnx 16060 sSet csts 16061 Basecbs 16063 lecple 16155 ltcplt 17148 mPwSer cmps 19565 <bag cltb 19568 ordPwSer copws 19569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-dm 5259 df-oprab 6796 df-mpt2 6797 df-opsr 19574 |
This theorem is referenced by: opsrle 19689 opsrbaslem 19691 opsrbaslemOLD 19692 psr1val 19770 |
Copyright terms: Public domain | W3C validator |