Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmpl Structured version   Visualization version   GIF version

Theorem reldmmpl 19642
 Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
reldmmpl Rel dom mPoly

Proof of Theorem reldmmpl
Dummy variables 𝑓 𝑖 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpl 19573 . 2 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑠(𝑠s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g𝑟)}))
21reldmmpt2 6918 1 Rel dom mPoly
 Colors of variables: wff setvar class Syntax hints:  {crab 3065  Vcvv 3351  ⦋csb 3682   class class class wbr 4786  dom cdm 5249  Rel wrel 5254  ‘cfv 6031  (class class class)co 6793   finSupp cfsupp 8431  Basecbs 16064   ↾s cress 16065  0gc0g 16308   mPwSer cmps 19566   mPoly cmpl 19568 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-rel 5256  df-dm 5259  df-oprab 6797  df-mpt2 6798  df-mpl 19573 This theorem is referenced by:  mplval  19643  mplrcl  19705  mplbaspropd  19822  ply1ascl  19843  mdegfval  24042  mdegcl  24049
 Copyright terms: Public domain W3C validator