![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldir | Structured version Visualization version GIF version |
Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
reldir | ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . 4 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
2 | 1 | isdir 17453 | . . 3 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
3 | 2 | ibi 256 | . 2 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
4 | 3 | simplld 808 | 1 ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ⊆ wss 3715 ∪ cuni 4588 I cid 5173 × cxp 5264 ◡ccnv 5265 ↾ cres 5268 ∘ ccom 5270 Rel wrel 5271 DirRelcdir 17449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-v 3342 df-in 3722 df-ss 3729 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-res 5278 df-dir 17451 |
This theorem is referenced by: dirtr 17457 dirge 17458 |
Copyright terms: Public domain | W3C validator |