![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relco | Structured version Visualization version GIF version |
Description: A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) |
Ref | Expression |
---|---|
relco | ⊢ Rel (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 5152 | . 2 ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | |
2 | 1 | relopabi 5278 | 1 ⊢ Rel (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∃wex 1744 class class class wbr 4685 ∘ ccom 5147 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-xp 5149 df-rel 5150 df-co 5152 |
This theorem is referenced by: dfco2 5672 resco 5677 coeq0 5682 coiun 5683 cocnvcnv2 5685 cores2 5686 co02 5687 co01 5688 coi1 5689 coass 5692 cossxp 5696 fmptco 6436 cofunexg 7172 dftpos4 7416 wunco 9593 relexprelg 13822 relexpaddg 13837 imasless 16247 znleval 19951 metustexhalf 22408 fcoinver 29544 fmptcof2 29585 dfpo2 31771 cnvco1 31775 cnvco2 31776 opelco3 31802 txpss3v 32110 sscoid 32145 xrnss3v 34274 cononrel1 38217 cononrel2 38218 coiun1 38261 relexpaddss 38327 brco2f1o 38647 brco3f1o 38648 neicvgnvor 38731 sblpnf 38826 |
Copyright terms: Public domain | W3C validator |