![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5272 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabi 5399 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4802 ◡ccnv 5263 Rel wrel 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-opab 4863 df-xp 5270 df-rel 5271 df-cnv 5272 |
This theorem is referenced by: relbrcnvg 5660 eliniseg2 5661 cnvsym 5666 intasym 5667 asymref 5668 cnvopab 5689 cnv0OLD 5692 cnvdif 5695 dfrel2 5739 cnvcnv 5742 cnvcnvOLD 5743 cnvsn0 5759 cnvcnvsn 5769 resdm2 5783 coi2 5811 coires1 5812 cnvssrndm 5816 unidmrn 5824 cnviin 5831 predep 5865 funi 6079 funcnvsn 6095 funcnv2 6116 fcnvres 6241 f1cnvcnv 6268 f1ompt 6543 fliftcnv 6722 cnvexg 7275 cnvf1o 7442 fsplit 7448 reldmtpos 7527 dmtpos 7531 rntpos 7532 dftpos3 7537 dftpos4 7538 tpostpos 7539 tposf12 7544 ercnv 7930 cnvct 8196 omxpenlem 8224 domss2 8282 cnvfi 8411 trclublem 13933 relexpaddg 13990 fsumcnv 14701 fsumcom2 14702 fsumcom2OLD 14703 fprodcnv 14910 fprodcom2 14911 fprodcom2OLD 14912 invsym2 16622 oppcsect2 16638 cnvps 17411 tsrdir 17437 mvdco 18063 gsumcom2 18572 funcnvmptOLD 29774 funcnvmpt 29775 fcnvgreu 29779 dfcnv2 29783 gsummpt2co 30087 cnvco1 31954 cnvco2 31955 colinrel 32468 trer 32614 releleccnv 34343 eleccnvep 34368 cnvresrn 34437 ineccnvmo 34443 elec1cnvxrn2 34476 cnvelrels 34566 cnvnonrel 38394 cnvcnvintabd 38406 cnvintabd 38409 cnvssco 38412 clrellem 38429 clcnvlem 38430 cnviun 38442 trrelsuperrel2dg 38463 dffrege115 38772 |
Copyright terms: Public domain | W3C validator |