MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relbrtpos Structured version   Visualization version   GIF version

Theorem relbrtpos 7533
Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
relbrtpos (Rel 𝐹 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))

Proof of Theorem relbrtpos
StepHypRef Expression
1 reltpos 7527 . . . 4 Rel tpos 𝐹
21a1i 11 . . 3 (Rel 𝐹 → Rel tpos 𝐹)
3 brrelex2 5314 . . 3 ((Rel tpos 𝐹 ∧ ⟨𝐴, 𝐵⟩tpos 𝐹𝐶) → 𝐶 ∈ V)
42, 3sylan 489 . 2 ((Rel 𝐹 ∧ ⟨𝐴, 𝐵⟩tpos 𝐹𝐶) → 𝐶 ∈ V)
5 brrelex2 5314 . 2 ((Rel 𝐹 ∧ ⟨𝐵, 𝐴𝐹𝐶) → 𝐶 ∈ V)
6 brtpos 7531 . 2 (𝐶 ∈ V → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
74, 5, 6pm5.21nd 979 1 (Rel 𝐹 → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 2139  Vcvv 3340  cop 4327   class class class wbr 4804  Rel wrel 5271  tpos ctpos 7521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-fv 6057  df-tpos 7522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator