![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relbrcnvg | Structured version Visualization version GIF version |
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5452 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
relbrcnvg | ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5653 | . . . 4 ⊢ Rel ◡𝑅 | |
2 | brrelex12 5304 | . . . 4 ⊢ ((Rel ◡𝑅 ∧ 𝐴◡𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 1, 2 | mpan 708 | . . 3 ⊢ (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | 3 | a1i 11 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
5 | brrelex12 5304 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
6 | 5 | ancomd 466 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
7 | 6 | ex 449 | . 2 ⊢ (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
8 | brcnvg 5450 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
9 | 8 | a1i 11 | . 2 ⊢ (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴))) |
10 | 4, 7, 9 | pm5.21ndd 368 | 1 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2131 Vcvv 3332 class class class wbr 4796 ◡ccnv 5257 Rel wrel 5263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-xp 5264 df-rel 5265 df-cnv 5266 |
This theorem is referenced by: eliniseg2 5655 relbrcnv 5656 isinv 16613 releleccnv 34337 relcnveq2 34410 elrelscnveq2 34558 brco2f1o 38824 brco3f1o 38825 ntrclsnvobr 38844 neicvgel1 38911 |
Copyright terms: Public domain | W3C validator |