![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > regsumsupp | Structured version Visualization version GIF version |
Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
regsumsupp | ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 19971 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | cnfld0 19991 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
3 | cnring 19989 | . . . . 5 ⊢ ℂfld ∈ Ring | |
4 | ringcmn 18795 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
5 | 3, 4 | mp1i 13 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → ℂfld ∈ CMnd) |
6 | simp3 1130 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
7 | simp1 1128 | . . . . 5 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹:𝐼⟶ℝ) | |
8 | ax-resscn 10193 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
9 | fss 6195 | . . . . 5 ⊢ ((𝐹:𝐼⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐼⟶ℂ) | |
10 | 7, 8, 9 | sylancl 694 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹:𝐼⟶ℂ) |
11 | ssid 3770 | . . . . 5 ⊢ (𝐹 supp 0) ⊆ (𝐹 supp 0) | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ⊆ (𝐹 supp 0)) |
13 | simp2 1129 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 𝐹 finSupp 0) | |
14 | 1, 2, 5, 6, 10, 12, 13 | gsumres 18527 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg 𝐹)) |
15 | cnfldadd 19972 | . . . 4 ⊢ + = (+g‘ℂfld) | |
16 | df-refld 20174 | . . . 4 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
17 | cnfldex 19970 | . . . . 5 ⊢ ℂfld ∈ V | |
18 | 17 | a1i 11 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → ℂfld ∈ V) |
19 | 8 | a1i 11 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → ℝ ⊆ ℂ) |
20 | 0red 10241 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → 0 ∈ ℝ) | |
21 | simpr 480 | . . . . . 6 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
22 | 21 | addid2d 10437 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
23 | 21 | addid1d 10436 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥) |
24 | 22, 23 | jca 556 | . . . 4 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
25 | 1, 15, 16, 18, 6, 19, 7, 20, 24 | gsumress 17490 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg 𝐹) = (ℝfld Σg 𝐹)) |
26 | 14, 25 | eqtr2d 2804 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = (ℂfld Σg (𝐹 ↾ (𝐹 supp 0)))) |
27 | suppssdm 7457 | . . . . 5 ⊢ (𝐹 supp 0) ⊆ dom 𝐹 | |
28 | fdm 6190 | . . . . . 6 ⊢ (𝐹:𝐼⟶ℝ → dom 𝐹 = 𝐼) | |
29 | 7, 28 | syl 17 | . . . . 5 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → dom 𝐹 = 𝐼) |
30 | 27, 29 | syl5sseq 3799 | . . . 4 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ⊆ 𝐼) |
31 | 7, 30 | feqresmpt 6391 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 ↾ (𝐹 supp 0)) = (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥))) |
32 | 31 | oveq2d 6807 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥)))) |
33 | id 22 | . . . . 5 ⊢ (𝐹 finSupp 0 → 𝐹 finSupp 0) | |
34 | 33 | fsuppimpd 8436 | . . . 4 ⊢ (𝐹 finSupp 0 → (𝐹 supp 0) ∈ Fin) |
35 | 34 | 3ad2ant2 1126 | . . 3 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (𝐹 supp 0) ∈ Fin) |
36 | simpl1 1225 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝐹:𝐼⟶ℝ) | |
37 | 30 | sselda 3749 | . . . . 5 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝑥 ∈ 𝐼) |
38 | 36, 37 | ffvelrnd 6502 | . . . 4 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹‘𝑥) ∈ ℝ) |
39 | 38 | recnd 10268 | . . 3 ⊢ (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹‘𝑥) ∈ ℂ) |
40 | 35, 39 | gsumfsum 20034 | . 2 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹‘𝑥))) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
41 | 26, 32, 40 | 3eqtrd 2807 | 1 ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1069 = wceq 1629 ∈ wcel 2143 Vcvv 3348 ⊆ wss 3720 class class class wbr 4783 ↦ cmpt 4860 dom cdm 5248 ↾ cres 5250 ⟶wf 6026 ‘cfv 6030 (class class class)co 6791 supp csupp 7444 Fincfn 8107 finSupp cfsupp 8429 ℂcc 10134 ℝcr 10135 0cc0 10136 + caddc 10139 Σcsu 14627 Σg cgsu 16315 CMndccmn 18406 Ringcrg 18761 ℂfldccnfld 19967 ℝfldcrefld 20173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-inf2 8700 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 ax-addf 10215 ax-mulf 10216 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-fal 1635 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-int 4609 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-se 5208 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-supp 7445 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-fsupp 8430 df-sup 8502 df-oi 8569 df-card 8963 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-9 11286 df-n0 11493 df-z 11578 df-dec 11694 df-uz 11888 df-rp 12035 df-fz 12533 df-fzo 12673 df-seq 13009 df-exp 13068 df-hash 13325 df-cj 14050 df-re 14051 df-im 14052 df-sqrt 14186 df-abs 14187 df-clim 14430 df-sum 14628 df-struct 16072 df-ndx 16073 df-slot 16074 df-base 16076 df-sets 16077 df-ress 16078 df-plusg 16168 df-mulr 16169 df-starv 16170 df-tset 16174 df-ple 16175 df-ds 16178 df-unif 16179 df-0g 16316 df-gsum 16317 df-mgm 17456 df-sgrp 17498 df-mnd 17509 df-grp 17639 df-minusg 17640 df-cntz 17963 df-cmn 18408 df-abl 18409 df-mgp 18704 df-ur 18716 df-ring 18763 df-cring 18764 df-cnfld 19968 df-refld 20174 |
This theorem is referenced by: rrxcph 23405 rrxmval 23413 rrxtopnfi 41024 |
Copyright terms: Public domain | W3C validator |