MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsumsupp Structured version   Visualization version   GIF version

Theorem regsumsupp 20191
Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.)
Assertion
Ref Expression
regsumsupp ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉

Proof of Theorem regsumsupp
StepHypRef Expression
1 cnfldbas 19971 . . . 4 ℂ = (Base‘ℂfld)
2 cnfld0 19991 . . . 4 0 = (0g‘ℂfld)
3 cnring 19989 . . . . 5 fld ∈ Ring
4 ringcmn 18795 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
53, 4mp1i 13 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → ℂfld ∈ CMnd)
6 simp3 1130 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐼𝑉)
7 simp1 1128 . . . . 5 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹:𝐼⟶ℝ)
8 ax-resscn 10193 . . . . 5 ℝ ⊆ ℂ
9 fss 6195 . . . . 5 ((𝐹:𝐼⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐼⟶ℂ)
107, 8, 9sylancl 694 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹:𝐼⟶ℂ)
11 ssid 3770 . . . . 5 (𝐹 supp 0) ⊆ (𝐹 supp 0)
1211a1i 11 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ⊆ (𝐹 supp 0))
13 simp2 1129 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 𝐹 finSupp 0)
141, 2, 5, 6, 10, 12, 13gsumres 18527 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg 𝐹))
15 cnfldadd 19972 . . . 4 + = (+g‘ℂfld)
16 df-refld 20174 . . . 4 fld = (ℂflds ℝ)
17 cnfldex 19970 . . . . 5 fld ∈ V
1817a1i 11 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → ℂfld ∈ V)
198a1i 11 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → ℝ ⊆ ℂ)
20 0red 10241 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → 0 ∈ ℝ)
21 simpr 480 . . . . . 6 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
2221addid2d 10437 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
2321addid1d 10436 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
2422, 23jca 556 . . . 4 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
251, 15, 16, 18, 6, 19, 7, 20, 24gsumress 17490 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg 𝐹) = (ℝfld Σg 𝐹))
2614, 25eqtr2d 2804 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))))
27 suppssdm 7457 . . . . 5 (𝐹 supp 0) ⊆ dom 𝐹
28 fdm 6190 . . . . . 6 (𝐹:𝐼⟶ℝ → dom 𝐹 = 𝐼)
297, 28syl 17 . . . . 5 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → dom 𝐹 = 𝐼)
3027, 29syl5sseq 3799 . . . 4 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ⊆ 𝐼)
317, 30feqresmpt 6391 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 ↾ (𝐹 supp 0)) = (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥)))
3231oveq2d 6807 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝐹 ↾ (𝐹 supp 0))) = (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥))))
33 id 22 . . . . 5 (𝐹 finSupp 0 → 𝐹 finSupp 0)
3433fsuppimpd 8436 . . . 4 (𝐹 finSupp 0 → (𝐹 supp 0) ∈ Fin)
35343ad2ant2 1126 . . 3 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (𝐹 supp 0) ∈ Fin)
36 simpl1 1225 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝐹:𝐼⟶ℝ)
3730sselda 3749 . . . . 5 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → 𝑥𝐼)
3836, 37ffvelrnd 6502 . . . 4 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹𝑥) ∈ ℝ)
3938recnd 10268 . . 3 (((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) ∧ 𝑥 ∈ (𝐹 supp 0)) → (𝐹𝑥) ∈ ℂ)
4035, 39gsumfsum 20034 . 2 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℂfld Σg (𝑥 ∈ (𝐹 supp 0) ↦ (𝐹𝑥))) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
4126, 32, 403eqtrd 2807 1 ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1069   = wceq 1629  wcel 2143  Vcvv 3348  wss 3720   class class class wbr 4783  cmpt 4860  dom cdm 5248  cres 5250  wf 6026  cfv 6030  (class class class)co 6791   supp csupp 7444  Fincfn 8107   finSupp cfsupp 8429  cc 10134  cr 10135  0cc0 10136   + caddc 10139  Σcsu 14627   Σg cgsu 16315  CMndccmn 18406  Ringcrg 18761  fldccnfld 19967  fldcrefld 20173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-fal 1635  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-int 4609  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-se 5208  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-sup 8502  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13009  df-exp 13068  df-hash 13325  df-cj 14050  df-re 14051  df-im 14052  df-sqrt 14186  df-abs 14187  df-clim 14430  df-sum 14628  df-struct 16072  df-ndx 16073  df-slot 16074  df-base 16076  df-sets 16077  df-ress 16078  df-plusg 16168  df-mulr 16169  df-starv 16170  df-tset 16174  df-ple 16175  df-ds 16178  df-unif 16179  df-0g 16316  df-gsum 16317  df-mgm 17456  df-sgrp 17498  df-mnd 17509  df-grp 17639  df-minusg 17640  df-cntz 17963  df-cmn 18408  df-abl 18409  df-mgp 18704  df-ur 18716  df-ring 18763  df-cring 18764  df-cnfld 19968  df-refld 20174
This theorem is referenced by:  rrxcph  23405  rrxmval  23413  rrxtopnfi  41024
  Copyright terms: Public domain W3C validator