![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rege1logbzge0 | Structured version Visualization version GIF version |
Description: The general logarithm, with an integer base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020.) |
Ref | Expression |
---|---|
rege1logbzge0 | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11588 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
2 | 1 | 3ad2ant2 1128 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵) → 𝐵 ∈ ℝ) |
3 | 1lt2 11401 | . . . . . 6 ⊢ 1 < 2 | |
4 | 1re 10245 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℝ) |
6 | 2re 11296 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 2 ∈ ℝ) |
8 | 1 | adantl 467 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
9 | ltletr 10335 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝐵) → 1 < 𝐵)) | |
10 | 5, 7, 8, 9 | syl3anc 1476 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((1 < 2 ∧ 2 ≤ 𝐵) → 1 < 𝐵)) |
11 | 3, 10 | mpani 676 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ≤ 𝐵 → 1 < 𝐵)) |
12 | 11 | 3impia 1109 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵) → 1 < 𝐵) |
13 | 2, 12 | jca 501 | . . 3 ⊢ ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵) → (𝐵 ∈ ℝ ∧ 1 < 𝐵)) |
14 | eluz2 11899 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 2 ≤ 𝐵)) | |
15 | 4 | rexri 10303 | . . . 4 ⊢ 1 ∈ ℝ* |
16 | elioopnf 12473 | . . . 4 ⊢ (1 ∈ ℝ* → (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵))) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (𝐵 ∈ (1(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) |
18 | 13, 14, 17 | 3imtr4i 281 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ (1(,)+∞)) |
19 | rege1logbrege0 42877 | . 2 ⊢ ((𝐵 ∈ (1(,)+∞) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) | |
20 | 18, 19 | sylan 569 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ (1[,)+∞)) → 0 ≤ (𝐵 logb 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 ∈ wcel 2145 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 ℝcr 10141 0cc0 10142 1c1 10143 +∞cpnf 10277 ℝ*cxr 10279 < clt 10280 ≤ cle 10281 2c2 11276 ℤcz 11584 ℤ≥cuz 11893 (,)cioo 12380 [,)cico 12382 logb clogb 24723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 df-logb 24724 |
This theorem is referenced by: blennnelnn 42895 dignnld 42922 |
Copyright terms: Public domain | W3C validator |