Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsum2cnlem1 Structured version   Visualization version   GIF version

Theorem refsum2cnlem1 39510
Description: This is the core Lemma for refsum2cn 39511: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsum2cnlem1.1 𝑥𝐴
refsum2cnlem1.2 𝑥𝐹
refsum2cnlem1.3 𝑥𝐺
refsum2cnlem1.4 𝑥𝜑
refsum2cnlem1.5 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
refsum2cnlem1.6 𝐾 = (topGen‘ran (,))
refsum2cnlem1.7 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsum2cnlem1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
refsum2cnlem1.9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsum2cnlem1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑘)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem refsum2cnlem1
StepHypRef Expression
1 refsum2cnlem1.4 . . 3 𝑥𝜑
2 refsum2cnlem1.5 . . . . . . . . 9 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
3 nfmpt1 4780 . . . . . . . . 9 𝑘(𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
42, 3nfcxfr 2791 . . . . . . . 8 𝑘𝐴
5 nfcv 2793 . . . . . . . 8 𝑘1
64, 5nffv 6236 . . . . . . 7 𝑘(𝐴‘1)
7 nfcv 2793 . . . . . . 7 𝑘𝑥
86, 7nffv 6236 . . . . . 6 𝑘((𝐴‘1)‘𝑥)
98a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘1)‘𝑥))
10 nfcv 2793 . . . . . . . 8 𝑘2
114, 10nffv 6236 . . . . . . 7 𝑘(𝐴‘2)
1211, 7nffv 6236 . . . . . 6 𝑘((𝐴‘2)‘𝑥)
1312a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 𝑘((𝐴‘2)‘𝑥))
14 1cnd 10094 . . . . 5 ((𝜑𝑥𝑋) → 1 ∈ ℂ)
15 2cnd 11131 . . . . 5 ((𝜑𝑥𝑋) → 2 ∈ ℂ)
16 1ex 10073 . . . . . . . . . . 11 1 ∈ V
1716prid1 4329 . . . . . . . . . 10 1 ∈ {1, 2}
18 refsum2cnlem1.8 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
19 refsum2cnlem1.9 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
2018, 19ifcld 4164 . . . . . . . . . 10 (𝜑 → if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
21 eqeq1 2655 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1))
2221ifbid 4141 . . . . . . . . . . 11 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = if(1 = 1, 𝐹, 𝐺))
2322, 2fvmptg 6319 . . . . . . . . . 10 ((1 ∈ {1, 2} ∧ if(1 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
2417, 20, 23sylancr 696 . . . . . . . . 9 (𝜑 → (𝐴‘1) = if(1 = 1, 𝐹, 𝐺))
25 eqid 2651 . . . . . . . . . 10 1 = 1
2625iftruei 4126 . . . . . . . . 9 if(1 = 1, 𝐹, 𝐺) = 𝐹
2724, 26syl6eq 2701 . . . . . . . 8 (𝜑 → (𝐴‘1) = 𝐹)
2827adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘1) = 𝐹)
2928fveq1d 6231 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) = (𝐹𝑥))
30 eqid 2651 . . . . . . . . . . 11 𝐽 = 𝐽
31 eqid 2651 . . . . . . . . . . 11 𝐾 = 𝐾
3230, 31cnf 21098 . . . . . . . . . 10 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
3318, 32syl 17 . . . . . . . . 9 (𝜑𝐹: 𝐽 𝐾)
34 refsum2cnlem1.7 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
35 toponuni 20767 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3634, 35syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
3736eqcomd 2657 . . . . . . . . . 10 (𝜑 𝐽 = 𝑋)
38 refsum2cnlem1.6 . . . . . . . . . . . . 13 𝐾 = (topGen‘ran (,))
3938unieqi 4477 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
40 uniretop 22613 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
4139, 40eqtr4i 2676 . . . . . . . . . . 11 𝐾 = ℝ
4241a1i 11 . . . . . . . . . 10 (𝜑 𝐾 = ℝ)
4337, 42feq23d 6078 . . . . . . . . 9 (𝜑 → (𝐹: 𝐽 𝐾𝐹:𝑋⟶ℝ))
4433, 43mpbid 222 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
4544anim1i 591 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹:𝑋⟶ℝ ∧ 𝑥𝑋))
46 ffvelrn 6397 . . . . . . 7 ((𝐹:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
47 recn 10064 . . . . . . 7 ((𝐹𝑥) ∈ ℝ → (𝐹𝑥) ∈ ℂ)
4845, 46, 473syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
4929, 48eqeltrd 2730 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘1)‘𝑥) ∈ ℂ)
50 2ex 11130 . . . . . . . . . . 11 2 ∈ V
5150prid2 4330 . . . . . . . . . 10 2 ∈ {1, 2}
5218, 19ifcld 4164 . . . . . . . . . 10 (𝜑 → if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
53 eqeq1 2655 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 = 1 ↔ 2 = 1))
5453ifbid 4141 . . . . . . . . . . 11 (𝑘 = 2 → if(𝑘 = 1, 𝐹, 𝐺) = if(2 = 1, 𝐹, 𝐺))
5554, 2fvmptg 6319 . . . . . . . . . 10 ((2 ∈ {1, 2} ∧ if(2 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
5651, 52, 55sylancr 696 . . . . . . . . 9 (𝜑 → (𝐴‘2) = if(2 = 1, 𝐹, 𝐺))
57 1ne2 11278 . . . . . . . . . . 11 1 ≠ 2
5857nesymi 2880 . . . . . . . . . 10 ¬ 2 = 1
5958iffalsei 4129 . . . . . . . . 9 if(2 = 1, 𝐹, 𝐺) = 𝐺
6056, 59syl6eq 2701 . . . . . . . 8 (𝜑 → (𝐴‘2) = 𝐺)
6160adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐴‘2) = 𝐺)
6261fveq1d 6231 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) = (𝐺𝑥))
6330, 31cnf 21098 . . . . . . . . . 10 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
6419, 63syl 17 . . . . . . . . 9 (𝜑𝐺: 𝐽 𝐾)
6537, 42feq23d 6078 . . . . . . . . 9 (𝜑 → (𝐺: 𝐽 𝐾𝐺:𝑋⟶ℝ))
6664, 65mpbid 222 . . . . . . . 8 (𝜑𝐺:𝑋⟶ℝ)
6766anim1i 591 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐺:𝑋⟶ℝ ∧ 𝑥𝑋))
68 ffvelrn 6397 . . . . . . 7 ((𝐺:𝑋⟶ℝ ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ℝ)
69 recn 10064 . . . . . . 7 ((𝐺𝑥) ∈ ℝ → (𝐺𝑥) ∈ ℂ)
7067, 68, 693syl 18 . . . . . 6 ((𝜑𝑥𝑋) → (𝐺𝑥) ∈ ℂ)
7162, 70eqeltrd 2730 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴‘2)‘𝑥) ∈ ℂ)
7257a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 1 ≠ 2)
73 fveq2 6229 . . . . . . 7 (𝑘 = 1 → (𝐴𝑘) = (𝐴‘1))
7473fveq1d 6231 . . . . . 6 (𝑘 = 1 → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
7574adantl 481 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 1) → ((𝐴𝑘)‘𝑥) = ((𝐴‘1)‘𝑥))
76 fveq2 6229 . . . . . . 7 (𝑘 = 2 → (𝐴𝑘) = (𝐴‘2))
7776fveq1d 6231 . . . . . 6 (𝑘 = 2 → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
7877adantl 481 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘 = 2) → ((𝐴𝑘)‘𝑥) = ((𝐴‘2)‘𝑥))
799, 13, 14, 15, 49, 71, 72, 75, 78sumpair 39508 . . . 4 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)))
8029, 62oveq12d 6708 . . . 4 ((𝜑𝑥𝑋) → (((𝐴‘1)‘𝑥) + ((𝐴‘2)‘𝑥)) = ((𝐹𝑥) + (𝐺𝑥)))
8179, 80eqtrd 2685 . . 3 ((𝜑𝑥𝑋) → Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
821, 81mpteq2da 4776 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))))
83 prfi 8276 . . . 4 {1, 2} ∈ Fin
8483a1i 11 . . 3 (𝜑 → {1, 2} ∈ Fin)
85 eqid 2651 . . . . . . . . . 10 𝑋 = 𝑋
8685ax-gen 1762 . . . . . . . . 9 𝑥 𝑋 = 𝑋
87 refsum2cnlem1.1 . . . . . . . . . . . 12 𝑥𝐴
88 nfcv 2793 . . . . . . . . . . . 12 𝑥𝑘
8987, 88nffv 6236 . . . . . . . . . . 11 𝑥(𝐴𝑘)
90 refsum2cnlem1.2 . . . . . . . . . . 11 𝑥𝐹
9189, 90nfeq 2805 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐹
92 fveq1 6228 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐹 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
9392a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐹𝑥)))
9491, 93ralrimi 2986 . . . . . . . . 9 ((𝐴𝑘) = 𝐹 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥))
95 mpteq12f 4764 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐹𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9686, 94, 95sylancr 696 . . . . . . . 8 ((𝐴𝑘) = 𝐹 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
9796adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐹𝑥)))
98 retopon 22614 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
9938, 98eqeltri 2726 . . . . . . . . . . . 12 𝐾 ∈ (TopOn‘ℝ)
10099a1i 11 . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘ℝ))
101 cnf2 21101 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶ℝ)
10234, 100, 18, 101syl3anc 1366 . . . . . . . . . 10 (𝜑𝐹:𝑋⟶ℝ)
103 ffn 6083 . . . . . . . . . 10 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
104102, 103syl 17 . . . . . . . . 9 (𝜑𝐹 Fn 𝑋)
10590dffn5f 6291 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
106104, 105sylib 208 . . . . . . . 8 (𝜑𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
107106adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
10897, 107eqtr4d 2688 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐹)
10918adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → 𝐹 ∈ (𝐽 Cn 𝐾))
110108, 109eqeltrd 2730 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
111110adantlr 751 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐹) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
112 refsum2cnlem1.3 . . . . . . . . . . 11 𝑥𝐺
11389, 112nfeq 2805 . . . . . . . . . 10 𝑥(𝐴𝑘) = 𝐺
114 fveq1 6228 . . . . . . . . . . 11 ((𝐴𝑘) = 𝐺 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
115114a1d 25 . . . . . . . . . 10 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 → ((𝐴𝑘)‘𝑥) = (𝐺𝑥)))
116113, 115ralrimi 2986 . . . . . . . . 9 ((𝐴𝑘) = 𝐺 → ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥))
117 mpteq12f 4764 . . . . . . . . 9 ((∀𝑥 𝑋 = 𝑋 ∧ ∀𝑥𝑋 ((𝐴𝑘)‘𝑥) = (𝐺𝑥)) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
11886, 116, 117sylancr 696 . . . . . . . 8 ((𝐴𝑘) = 𝐺 → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
119118adantl 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = (𝑥𝑋 ↦ (𝐺𝑥)))
120 cnf2 21101 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐺 ∈ (𝐽 Cn 𝐾)) → 𝐺:𝑋⟶ℝ)
12134, 100, 19, 120syl3anc 1366 . . . . . . . . . 10 (𝜑𝐺:𝑋⟶ℝ)
122 ffn 6083 . . . . . . . . . 10 (𝐺:𝑋⟶ℝ → 𝐺 Fn 𝑋)
123121, 122syl 17 . . . . . . . . 9 (𝜑𝐺 Fn 𝑋)
124112dffn5f 6291 . . . . . . . . 9 (𝐺 Fn 𝑋𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
125123, 124sylib 208 . . . . . . . 8 (𝜑𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
126125adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 = (𝑥𝑋 ↦ (𝐺𝑥)))
127119, 126eqtr4d 2688 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) = 𝐺)
12819adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → 𝐺 ∈ (𝐽 Cn 𝐾))
129127, 128eqeltrd 2730 . . . . 5 ((𝜑 ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
130129adantlr 751 . . . 4 (((𝜑𝑘 ∈ {1, 2}) ∧ (𝐴𝑘) = 𝐺) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
131 simpr 476 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → 𝑘 ∈ {1, 2})
13218, 19ifcld 4164 . . . . . . . . 9 (𝜑 → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
133132adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ {1, 2}) → if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾))
1342fvmpt2 6330 . . . . . . . 8 ((𝑘 ∈ {1, 2} ∧ if(𝑘 = 1, 𝐹, 𝐺) ∈ (𝐽 Cn 𝐾)) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
135131, 133, 134syl2anc 694 . . . . . . 7 ((𝜑𝑘 ∈ {1, 2}) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
136 iftrue 4125 . . . . . . 7 (𝑘 = 1 → if(𝑘 = 1, 𝐹, 𝐺) = 𝐹)
137135, 136sylan9eq 2705 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → (𝐴𝑘) = 𝐹)
138137orcd 406 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 1) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
139135adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = if(𝑘 = 1, 𝐹, 𝐺))
140 neeq2 2886 . . . . . . . . . . . 12 (𝑘 = 2 → (1 ≠ 𝑘 ↔ 1 ≠ 2))
14157, 140mpbiri 248 . . . . . . . . . . 11 (𝑘 = 2 → 1 ≠ 𝑘)
142141necomd 2878 . . . . . . . . . 10 (𝑘 = 2 → 𝑘 ≠ 1)
143142neneqd 2828 . . . . . . . . 9 (𝑘 = 2 → ¬ 𝑘 = 1)
144143adantl 481 . . . . . . . 8 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ¬ 𝑘 = 1)
145144iffalsed 4130 . . . . . . 7 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → if(𝑘 = 1, 𝐹, 𝐺) = 𝐺)
146139, 145eqtrd 2685 . . . . . 6 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → (𝐴𝑘) = 𝐺)
147146olcd 407 . . . . 5 (((𝜑𝑘 ∈ {1, 2}) ∧ 𝑘 = 2) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
148 elpri 4230 . . . . . 6 (𝑘 ∈ {1, 2} → (𝑘 = 1 ∨ 𝑘 = 2))
149148adantl 481 . . . . 5 ((𝜑𝑘 ∈ {1, 2}) → (𝑘 = 1 ∨ 𝑘 = 2))
150138, 147, 149mpjaodan 844 . . . 4 ((𝜑𝑘 ∈ {1, 2}) → ((𝐴𝑘) = 𝐹 ∨ (𝐴𝑘) = 𝐺))
151111, 130, 150mpjaodan 844 . . 3 ((𝜑𝑘 ∈ {1, 2}) → (𝑥𝑋 ↦ ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
1521, 38, 34, 84, 151refsumcn 39503 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ {1, 2} ((𝐴𝑘)‘𝑥)) ∈ (𝐽 Cn 𝐾))
15382, 152eqeltrrd 2731 1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  wal 1521   = wceq 1523  wnf 1748  wcel 2030  wnfc 2780  wne 2823  wral 2941  ifcif 4119  {cpr 4212   cuni 4468  cmpt 4762  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  1c1 9975   + caddc 9977  2c2 11108  (,)cioo 12213  Σcsu 14460  topGenctg 16145  TopOnctopon 20763   Cn ccn 21076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174
This theorem is referenced by:  refsum2cn  39511
  Copyright terms: Public domain W3C validator