![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reexpclzd | Structured version Visualization version GIF version |
Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpexpclzd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpexpclzd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
rpexpclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
reexpclzd | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpexpclzd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpexpclzd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | rpexpclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | reexpclz 13087 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ) | |
5 | 1, 2, 3, 4 | syl3anc 1474 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2143 ≠ wne 2941 (class class class)co 6791 ℝcr 10135 0cc0 10136 ℤcz 11577 ↑cexp 13067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-n0 11493 df-z 11578 df-uz 11888 df-seq 13009 df-exp 13068 |
This theorem is referenced by: iseraltlem2 14624 iseraltlem3 14625 iseralt 14626 basellem8 25041 basellem9 25042 mersenne 25179 lgseisen 25331 padicabv 25546 dya2iocucvr 30687 knoppndvlem1 32841 knoppndvlem14 32854 knoppndvlem18 32858 knoppndvlem19 32859 knoppndvlem21 32861 pellexlem2 37920 expnegico01 42833 fldivexpfllog2 42884 digvalnn0 42918 dignnld 42922 digexp 42926 dig2nn0 42930 |
Copyright terms: Public domain | W3C validator |