![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reelprrecn | Structured version Visualization version GIF version |
Description: Reals are a subset of the pair of real and complex numbers. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
reelprrecn | ⊢ ℝ ∈ {ℝ, ℂ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10233 | . 2 ⊢ ℝ ∈ V | |
2 | 1 | prid1 4434 | 1 ⊢ ℝ ∈ {ℝ, ℂ} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 {cpr 4319 ℂcc 10140 ℝcr 10141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-cnex 10198 ax-resscn 10199 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-un 3728 df-in 3730 df-ss 3737 df-sn 4318 df-pr 4320 |
This theorem is referenced by: dvf 23891 dvmptcj 23951 dvmptre 23952 dvmptim 23953 rolle 23973 cmvth 23974 mvth 23975 dvlip 23976 dvlipcn 23977 dvle 23990 dvivthlem1 23991 dvivth 23993 lhop2 23998 dvcnvre 24002 dvfsumle 24004 dvfsumge 24005 dvfsumabs 24006 dvfsumlem2 24010 dvfsum2 24017 ftc2 24027 itgparts 24030 itgsubstlem 24031 aalioulem3 24309 taylthlem2 24348 taylth 24349 efcvx 24423 pige3 24490 dvrelog 24604 advlog 24621 advlogexp 24622 logccv 24630 dvcxp1 24702 loglesqrt 24720 divsqrtsumlem 24927 lgamgulmlem2 24977 logexprlim 25171 logdivsum 25443 log2sumbnd 25454 fdvneggt 31018 fdvnegge 31020 itgexpif 31024 logdivsqrle 31068 ftc2nc 33826 dvreasin 33830 dvreacos 33831 areacirclem1 33832 itgpowd 38326 lhe4.4ex1a 39054 dvcosre 40641 dvcnre 40645 dvmptresicc 40649 itgsin0pilem1 40680 itgsinexplem1 40684 itgcoscmulx 40699 itgiccshift 40710 itgperiod 40711 itgsbtaddcnst 40712 dirkeritg 40833 dirkercncflem2 40835 fourierdlem28 40866 fourierdlem39 40877 fourierdlem56 40893 fourierdlem57 40894 fourierdlem58 40895 fourierdlem59 40896 fourierdlem60 40897 fourierdlem61 40898 fourierdlem62 40899 fourierdlem68 40905 fourierdlem72 40909 fouriersw 40962 etransclem2 40967 etransclem23 40988 etransclem35 41000 etransclem38 41003 etransclem39 41004 etransclem44 41009 etransclem45 41010 etransclem46 41011 etransclem47 41012 |
Copyright terms: Public domain | W3C validator |