![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > redwlklem | Structured version Visualization version GIF version |
Description: Lemma for redwlk 26800. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
Ref | Expression |
---|---|
redwlklem | ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . . 5 ⊢ (((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → 𝑃:(0...(♯‘𝐹))⟶𝑉) | |
2 | fzossfz 12702 | . . . . 5 ⊢ (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) | |
3 | fssres 6231 | . . . . 5 ⊢ ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) → (𝑃 ↾ (0..^(♯‘𝐹))):(0..^(♯‘𝐹))⟶𝑉) | |
4 | 1, 2, 3 | sylancl 697 | . . . 4 ⊢ (((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0..^(♯‘𝐹))⟶𝑉) |
5 | 4 | ex 449 | . . 3 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝑃 ↾ (0..^(♯‘𝐹))):(0..^(♯‘𝐹))⟶𝑉)) |
6 | lencl 13530 | . . . . . . . 8 ⊢ (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0) | |
7 | 6 | nn0zd 11692 | . . . . . . 7 ⊢ (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℤ) |
8 | fzoval 12685 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℤ → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1))) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ Word 𝑆 → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1))) |
10 | 9 | adantr 472 | . . . . 5 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1))) |
11 | wrdred1hash 13557 | . . . . . 6 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) | |
12 | oveq2 6822 | . . . . . . 7 ⊢ ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) = (0...((♯‘𝐹) − 1))) | |
13 | 12 | eqeq2d 2770 | . . . . . 6 ⊢ ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → ((0..^(♯‘𝐹)) = (0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) ↔ (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))) |
14 | 11, 13 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → ((0..^(♯‘𝐹)) = (0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) ↔ (0..^(♯‘𝐹)) = (0...((♯‘𝐹) − 1)))) |
15 | 10, 14 | mpbird 247 | . . . 4 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (0..^(♯‘𝐹)) = (0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))) |
16 | 15 | feq2d 6192 | . . 3 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → ((𝑃 ↾ (0..^(♯‘𝐹))):(0..^(♯‘𝐹))⟶𝑉 ↔ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉)) |
17 | 5, 16 | sylibd 229 | . 2 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉)) |
18 | 17 | 3impia 1110 | 1 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 class class class wbr 4804 ↾ cres 5268 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 0cc0 10148 1c1 10149 ≤ cle 10287 − cmin 10478 ℤcz 11589 ...cfz 12539 ..^cfzo 12679 ♯chash 13331 Word cword 13497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 df-hash 13332 df-word 13505 |
This theorem is referenced by: redwlk 26800 |
Copyright terms: Public domain | W3C validator |