MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redwlk Structured version   Visualization version   GIF version

Theorem redwlk 26800
Description: A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
Assertion
Ref Expression
redwlk ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))

Proof of Theorem redwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 26739 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2760 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2760 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 26737 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
5 wrdred1 13556 . . . . . . . . 9 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺))
65a1i 11 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺)))
73wlkf 26741 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
8 redwlklem 26799 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))
983exp 1113 . . . . . . . . . 10 (𝐹 ∈ Word dom (iEdg‘𝐺) → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
107, 9syl 17 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺))))
1110imp 444 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺)))
12 wlkcl 26742 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
13 wrdred1hash 13557 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
147, 13sylan 489 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
15 nn0z 11612 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
16 fzossrbm1 12711 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
1715, 16syl 17 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
18 ssralv 3807 . . . . . . . . . . . . 13 ((0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1917, 18syl 17 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
2017sselda 3744 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^(♯‘𝐹)))
21 fvres 6369 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^(♯‘𝐹)) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = (𝑃𝑘))
2220, 21syl 17 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = (𝑃𝑘))
2322eqcomd 2766 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘))
24 fzo0ss1 12712 . . . . . . . . . . . . . . . . . . 19 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
25 simpr 479 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 𝑘 ∈ (0..^((♯‘𝐹) − 1)))
2615adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (♯‘𝐹) ∈ ℤ)
27 1zzd 11620 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → 1 ∈ ℤ)
28 fzoaddel2 12738 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (0..^((♯‘𝐹) − 1)) ∧ (♯‘𝐹) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
2925, 26, 27, 28syl3anc 1477 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (1..^(♯‘𝐹)))
3024, 29sseldi 3742 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑘 + 1) ∈ (0..^(♯‘𝐹)))
31 fvres 6369 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 1) ∈ (0..^(♯‘𝐹)) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
3332eqcomd 2766 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)))
3423, 33eqeq12d 2775 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ↔ ((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))))
35 fvres 6369 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^((♯‘𝐹) − 1)) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3635adantl 473 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘) = (𝐹𝑘))
3736eqcomd 2766 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (𝐹𝑘) = ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))
3837fveq2d 6357 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))
3923sneqd 4333 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘)} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)})
4038, 39eqeq12d 2775 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}))
4123, 33preq12d 4420 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))})
4241, 38sseq12d 3775 . . . . . . . . . . . . . . 15 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))
4334, 40, 42ifpbi123d 1065 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4443biimpd 219 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑘 ∈ (0..^((♯‘𝐹) − 1))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4544ralimdva 3100 . . . . . . . . . . . 12 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4619, 45syld 47 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
4746adantr 472 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
48 oveq2 6822 . . . . . . . . . . . . 13 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))) = (0..^((♯‘𝐹) − 1)))
4948eqcomd 2766 . . . . . . . . . . . 12 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (0..^((♯‘𝐹) − 1)) = (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1))))))
5049raleqdv 3283 . . . . . . . . . . 11 ((♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5150adantl 473 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^((♯‘𝐹) − 1))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5247, 51sylibd 229 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
5312, 14, 52syl2an2r 911 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
546, 11, 533anim123d 1555 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
5554imp 444 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))))
56 id 22 . . . . . . 7 (𝐺 ∈ V → 𝐺 ∈ V)
57 resexg 5600 . . . . . . 7 (𝐹 ∈ V → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V)
58 resexg 5600 . . . . . . 7 (𝑃 ∈ V → (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V)
592, 3iswlk 26737 . . . . . . . 8 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))) ↔ ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘))))))
6059bicomd 213 . . . . . . 7 ((𝐺 ∈ V ∧ (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ V ∧ (𝑃 ↾ (0..^(♯‘𝐹))) ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6156, 57, 58, 60syl3an 1164 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word dom (iEdg‘𝐺) ∧ (𝑃 ↾ (0..^(♯‘𝐹))):(0...(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))))if-(((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘) = ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1)), ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)) = {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘)}, {((𝑃 ↾ (0..^(♯‘𝐹)))‘𝑘), ((𝑃 ↾ (0..^(♯‘𝐹)))‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘((𝐹 ↾ (0..^((♯‘𝐹) − 1)))‘𝑘)))) ↔ (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6255, 61syl5ib 234 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6362expcomd 453 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
644, 63sylbid 230 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))))
651, 64mpcom 38 . 2 (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹)))))
6665anabsi5 893 1 ((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (♯‘𝐹)) → (𝐹 ↾ (0..^((♯‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  if-wif 1050  w3a 1072   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  wss 3715  {csn 4321  {cpr 4323   class class class wbr 4804  dom cdm 5266  cres 5268  wf 6045  cfv 6049  (class class class)co 6814  0cc0 10148  1c1 10149   + caddc 10151  cle 10287  cmin 10478  0cn0 11504  cz 11589  ...cfz 12539  ..^cfzo 12679  chash 13331  Word cword 13497  Vtxcvtx 26094  iEdgciedg 26095  Walkscwlks 26723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-wlks 26726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator