MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recseq Structured version   Visualization version   GIF version

Theorem recseq 7515
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))

Proof of Theorem recseq
StepHypRef Expression
1 wrecseq3 7457 . 2 (𝐹 = 𝐺 → wrecs( E , On, 𝐹) = wrecs( E , On, 𝐺))
2 df-recs 7513 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
3 df-recs 7513 . 2 recs(𝐺) = wrecs( E , On, 𝐺)
41, 2, 33eqtr4g 2710 1 (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523   E cep 5057  Oncon0 5761  wrecscwrecs 7451  recscrecs 7512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-iota 5889  df-fv 5934  df-wrecs 7452  df-recs 7513
This theorem is referenced by:  rdgeq1  7552  rdgeq2  7553  dfoi  8457  oieq1  8458  oieq2  8459  ordtypecbv  8463  dfac12r  9006  zorn2g  9363  ttukey2g  9376  csbrdgg  33305  aomclem3  37943  aomclem8  37948
  Copyright terms: Public domain W3C validator