![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recseq | Structured version Visualization version GIF version |
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
recseq | ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrecseq3 7457 | . 2 ⊢ (𝐹 = 𝐺 → wrecs( E , On, 𝐹) = wrecs( E , On, 𝐺)) | |
2 | df-recs 7513 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
3 | df-recs 7513 | . 2 ⊢ recs(𝐺) = wrecs( E , On, 𝐺) | |
4 | 1, 2, 3 | 3eqtr4g 2710 | 1 ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 E cep 5057 Oncon0 5761 wrecscwrecs 7451 recscrecs 7512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-iota 5889 df-fv 5934 df-wrecs 7452 df-recs 7513 |
This theorem is referenced by: rdgeq1 7552 rdgeq2 7553 dfoi 8457 oieq1 8458 oieq2 8459 ordtypecbv 8463 dfac12r 9006 zorn2g 9363 ttukey2g 9376 csbrdgg 33305 aomclem3 37943 aomclem8 37948 |
Copyright terms: Public domain | W3C validator |