![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reclt0 | Structured version Visualization version GIF version |
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
reclt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
reclt0.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
reclt0 | ⊢ (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reclt0.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
3 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐴 < 0) | |
4 | 2, 3 | reclt0d 40101 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 0) → (1 / 𝐴) < 0) |
5 | 4 | ex 449 | . 2 ⊢ (𝜑 → (𝐴 < 0 → (1 / 𝐴) < 0)) |
6 | 0red 10229 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ) | |
7 | 1 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ) |
8 | reclt0.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ≠ 0) | |
9 | 8 | necomd 2983 | . . . . . . . . 9 ⊢ (𝜑 → 0 ≠ 𝐴) |
10 | 9 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ≠ 𝐴) |
11 | simpr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0) | |
12 | 6, 7, 10, 11 | lttri5d 40008 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → 0 < 𝐴) |
13 | 0red 10229 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
14 | 1, 8 | rereccld 11040 | . . . . . . . . . 10 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
15 | 14 | adantr 472 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
16 | 1 | adantr 472 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
17 | simpr 479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴) | |
18 | 16, 17 | recgt0d 11146 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) |
19 | 13, 15, 18 | ltled 10373 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
20 | 13, 15 | lenltd 10371 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
21 | 19, 20 | mpbid 222 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0) |
22 | 12, 21 | syldan 488 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ (1 / 𝐴) < 0) |
23 | 22 | ex 449 | . . . . 5 ⊢ (𝜑 → (¬ 𝐴 < 0 → ¬ (1 / 𝐴) < 0)) |
24 | 23 | con4d 114 | . . . 4 ⊢ (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0)) |
25 | 24 | imp 444 | . . 3 ⊢ ((𝜑 ∧ (1 / 𝐴) < 0) → 𝐴 < 0) |
26 | 25 | ex 449 | . 2 ⊢ (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0)) |
27 | 5, 26 | impbid 202 | 1 ⊢ (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2135 ≠ wne 2928 class class class wbr 4800 (class class class)co 6809 ℝcr 10123 0cc0 10124 1c1 10125 < clt 10262 ≤ cle 10263 / cdiv 10872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-po 5183 df-so 5184 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 |
This theorem is referenced by: pimrecltneg 41435 smfrec 41498 |
Copyright terms: Public domain | W3C validator |