Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclt0 Structured version   Visualization version   GIF version

Theorem reclt0 40108
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
reclt0.1 (𝜑𝐴 ∈ ℝ)
reclt0.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
reclt0 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))

Proof of Theorem reclt0
StepHypRef Expression
1 reclt0.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 472 . . . 4 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
3 simpr 479 . . . 4 ((𝜑𝐴 < 0) → 𝐴 < 0)
42, 3reclt0d 40101 . . 3 ((𝜑𝐴 < 0) → (1 / 𝐴) < 0)
54ex 449 . 2 (𝜑 → (𝐴 < 0 → (1 / 𝐴) < 0))
6 0red 10229 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
71adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
8 reclt0.2 . . . . . . . . . 10 (𝜑𝐴 ≠ 0)
98necomd 2983 . . . . . . . . 9 (𝜑 → 0 ≠ 𝐴)
109adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ≠ 𝐴)
11 simpr 479 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
126, 7, 10, 11lttri5d 40008 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
13 0red 10229 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ)
141, 8rereccld 11040 . . . . . . . . . 10 (𝜑 → (1 / 𝐴) ∈ ℝ)
1514adantr 472 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
161adantr 472 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 479 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
1816, 17recgt0d 11146 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
1913, 15, 18ltled 10373 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
2013, 15lenltd 10371 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
2119, 20mpbid 222 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
2212, 21syldan 488 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ (1 / 𝐴) < 0)
2322ex 449 . . . . 5 (𝜑 → (¬ 𝐴 < 0 → ¬ (1 / 𝐴) < 0))
2423con4d 114 . . . 4 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
2524imp 444 . . 3 ((𝜑 ∧ (1 / 𝐴) < 0) → 𝐴 < 0)
2625ex 449 . 2 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
275, 26impbid 202 1 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2135  wne 2928   class class class wbr 4800  (class class class)co 6809  cr 10123  0cc0 10124  1c1 10125   < clt 10262  cle 10263   / cdiv 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-po 5183  df-so 5184  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873
This theorem is referenced by:  pimrecltneg  41435  smfrec  41498
  Copyright terms: Public domain W3C validator