Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclimc Structured version   Visualization version   GIF version

Theorem reclimc 40305
Description: Limit of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
reclimc.f 𝐹 = (𝑥𝐴𝐵)
reclimc.g 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
reclimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
reclimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
reclimc.cne0 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
reclimc (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem reclimc
StepHypRef Expression
1 eqid 2724 . . . 4 (𝑥𝐴 ↦ (𝐶𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵))
2 eqid 2724 . . . 4 (𝑥𝐴 ↦ (𝐵 · 𝐶)) = (𝑥𝐴 ↦ (𝐵 · 𝐶))
3 eqid 2724 . . . 4 (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶)))
4 limccl 23759 . . . . . . 7 (𝐹 lim 𝐷) ⊆ ℂ
5 reclimc.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
64, 5sseldi 3707 . . . . . 6 (𝜑𝐶 ∈ ℂ)
76adantr 472 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
8 reclimc.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
98eldifad 3692 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 10505 . . . 4 ((𝜑𝑥𝐴) → (𝐶𝐵) ∈ ℂ)
119, 7mulcld 10173 . . . . 5 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℂ)
12 eldifsni 4429 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ≠ 0)
138, 12syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
14 reclimc.cne0 . . . . . . . . 9 (𝜑𝐶 ≠ 0)
1514adantr 472 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
169, 7, 13, 15mulne0d 10792 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ≠ 0)
1716neneqd 2901 . . . . . 6 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) = 0)
18 elsng 4299 . . . . . . 7 ((𝐵 · 𝐶) ∈ ℂ → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
1911, 18syl 17 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵 · 𝐶) ∈ {0} ↔ (𝐵 · 𝐶) = 0))
2017, 19mtbird 314 . . . . 5 ((𝜑𝑥𝐴) → ¬ (𝐵 · 𝐶) ∈ {0})
2111, 20eldifd 3691 . . . 4 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ (ℂ ∖ {0}))
22 eqid 2724 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
23 eqid 2724 . . . . . 6 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
24 eqid 2724 . . . . . 6 (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶 + -𝐵))
259negcld 10492 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
26 reclimc.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
2726, 9, 5limcmptdm 40287 . . . . . . 7 (𝜑𝐴 ⊆ ℂ)
28 limcrcl 23758 . . . . . . . . 9 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
295, 28syl 17 . . . . . . . 8 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
3029simp3d 1136 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
3122, 27, 6, 30constlimc 40276 . . . . . 6 (𝜑𝐶 ∈ ((𝑥𝐴𝐶) lim 𝐷))
3226, 23, 9, 5neglimc 40299 . . . . . 6 (𝜑 → -𝐶 ∈ ((𝑥𝐴 ↦ -𝐵) lim 𝐷))
3322, 23, 24, 7, 25, 31, 32addlimc 40300 . . . . 5 (𝜑 → (𝐶 + -𝐶) ∈ ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷))
346negidd 10495 . . . . 5 (𝜑 → (𝐶 + -𝐶) = 0)
357, 9negsubd 10511 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 + -𝐵) = (𝐶𝐵))
3635mpteq2dva 4852 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐶 + -𝐵)) = (𝑥𝐴 ↦ (𝐶𝐵)))
3736oveq1d 6780 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐶 + -𝐵)) lim 𝐷) = ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3833, 34, 373eltr3d 2817 . . . 4 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ (𝐶𝐵)) lim 𝐷))
3926, 22, 2, 9, 7, 5, 31mullimc 40268 . . . 4 (𝜑 → (𝐶 · 𝐶) ∈ ((𝑥𝐴 ↦ (𝐵 · 𝐶)) lim 𝐷))
406, 6, 14, 14mulne0d 10792 . . . 4 (𝜑 → (𝐶 · 𝐶) ≠ 0)
411, 2, 3, 10, 21, 38, 39, 400ellimcdiv 40301 . . 3 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷))
42 1cnd 10169 . . . . . . 7 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
4342, 9, 42, 7, 13, 15divsubdivd 10959 . . . . . 6 ((𝜑𝑥𝐴) → ((1 / 𝐵) − (1 / 𝐶)) = (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)))
447mulid2d 10171 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐶) = 𝐶)
459mulid2d 10171 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
4644, 45oveq12d 6783 . . . . . . 7 ((𝜑𝑥𝐴) → ((1 · 𝐶) − (1 · 𝐵)) = (𝐶𝐵))
4746oveq1d 6780 . . . . . 6 ((𝜑𝑥𝐴) → (((1 · 𝐶) − (1 · 𝐵)) / (𝐵 · 𝐶)) = ((𝐶𝐵) / (𝐵 · 𝐶)))
4843, 47eqtr2d 2759 . . . . 5 ((𝜑𝑥𝐴) → ((𝐶𝐵) / (𝐵 · 𝐶)) = ((1 / 𝐵) − (1 / 𝐶)))
4948mpteq2dva 4852 . . . 4 (𝜑 → (𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))))
5049oveq1d 6780 . . 3 (𝜑 → ((𝑥𝐴 ↦ ((𝐶𝐵) / (𝐵 · 𝐶))) lim 𝐷) = ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
5141, 50eleqtrd 2805 . 2 (𝜑 → 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷))
52 reclimc.g . . 3 𝐺 = (𝑥𝐴 ↦ (1 / 𝐵))
53 eqid 2724 . . 3 (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) = (𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶)))
549, 13reccld 10907 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
556, 14reccld 10907 . . 3 (𝜑 → (1 / 𝐶) ∈ ℂ)
5652, 53, 27, 54, 30, 55ellimcabssub0 40269 . 2 (𝜑 → ((1 / 𝐶) ∈ (𝐺 lim 𝐷) ↔ 0 ∈ ((𝑥𝐴 ↦ ((1 / 𝐵) − (1 / 𝐶))) lim 𝐷)))
5751, 56mpbird 247 1 (𝜑 → (1 / 𝐶) ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  cdif 3677  wss 3680  {csn 4285  cmpt 4837  dom cdm 5218  wf 5997  (class class class)co 6765  cc 10047  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054  cmin 10379  -cneg 10380   / cdiv 10797   lim climc 23746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fi 8433  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-fz 12441  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-plusg 16077  df-mulr 16078  df-starv 16079  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-rest 16206  df-topn 16207  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cnp 21155  df-xms 22247  df-ms 22248  df-limc 23750
This theorem is referenced by:  divlimc  40308  fourierdlem62  40805
  Copyright terms: Public domain W3C validator