MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem3pr Structured version   Visualization version   GIF version

Theorem reclem3pr 9856
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem3pr (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem3pr
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1p 9789 . . . 4 1P = {𝑤𝑤 <Q 1Q}
21abeq2i 2733 . . 3 (𝑤 ∈ 1P𝑤 <Q 1Q)
3 ltrnq 9786 . . . . . . 7 (𝑤 <Q 1Q ↔ (*Q‘1Q) <Q (*Q𝑤))
4 mulcomnq 9760 . . . . . . . . 9 ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q))
5 1nq 9735 . . . . . . . . . 10 1QQ
6 recclnq 9773 . . . . . . . . . 10 (1QQ → (*Q‘1Q) ∈ Q)
7 mulidnq 9770 . . . . . . . . . 10 ((*Q‘1Q) ∈ Q → ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q))
85, 6, 7mp2b 10 . . . . . . . . 9 ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q)
9 recidnq 9772 . . . . . . . . . 10 (1QQ → (1Q ·Q (*Q‘1Q)) = 1Q)
105, 9ax-mp 5 . . . . . . . . 9 (1Q ·Q (*Q‘1Q)) = 1Q
114, 8, 103eqtr3i 2650 . . . . . . . 8 (*Q‘1Q) = 1Q
1211breq1i 4651 . . . . . . 7 ((*Q‘1Q) <Q (*Q𝑤) ↔ 1Q <Q (*Q𝑤))
133, 12bitri 264 . . . . . 6 (𝑤 <Q 1Q ↔ 1Q <Q (*Q𝑤))
14 prlem936 9854 . . . . . 6 ((𝐴P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣𝐴 ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
1513, 14sylan2b 492 . . . . 5 ((𝐴P𝑤 <Q 1Q) → ∃𝑣𝐴 ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
16 prnmax 9802 . . . . . . 7 ((𝐴P𝑣𝐴) → ∃𝑧𝐴 𝑣 <Q 𝑧)
1716ad2ant2r 782 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → ∃𝑧𝐴 𝑣 <Q 𝑧)
18 elprnq 9798 . . . . . . . . . . . . 13 ((𝐴P𝑣𝐴) → 𝑣Q)
1918ad2ant2r 782 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → 𝑣Q)
20193adant3 1079 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑣Q)
21 simp1r 1084 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤 <Q 1Q)
22 ltrelnq 9733 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
2322brel 5158 . . . . . . . . . . . . 13 (𝑤 <Q 1Q → (𝑤Q ∧ 1QQ))
2423simpld 475 . . . . . . . . . . . 12 (𝑤 <Q 1Q𝑤Q)
2521, 24syl 17 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤Q)
26 simp3 1061 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑣 <Q 𝑧)
27 simp2r 1086 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
28 ltrnq 9786 . . . . . . . . . . . . . . . . 17 (𝑣 <Q 𝑧 ↔ (*Q𝑧) <Q (*Q𝑣))
29 fvex 6188 . . . . . . . . . . . . . . . . . 18 (*Q𝑧) ∈ V
30 fvex 6188 . . . . . . . . . . . . . . . . . 18 (*Q𝑣) ∈ V
31 ltmnq 9779 . . . . . . . . . . . . . . . . . 18 (𝑢Q → (𝑥 <Q 𝑦 ↔ (𝑢 ·Q 𝑥) <Q (𝑢 ·Q 𝑦)))
32 vex 3198 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
33 mulcomnq 9760 . . . . . . . . . . . . . . . . . 18 (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥)
3429, 30, 31, 32, 33caovord2 6831 . . . . . . . . . . . . . . . . 17 (𝑤Q → ((*Q𝑧) <Q (*Q𝑣) ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3528, 34syl5bb 272 . . . . . . . . . . . . . . . 16 (𝑤Q → (𝑣 <Q 𝑧 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3635adantl 482 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → (𝑣 <Q 𝑧 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3736biimpd 219 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → (𝑣 <Q 𝑧 → ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
38 mulcomnq 9760 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣)
39 recidnq 9772 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = 1Q)
4038, 39syl5eqr 2668 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → ((*Q𝑣) ·Q 𝑣) = 1Q)
41 recidnq 9772 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
4240, 41oveqan12d 6654 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
43 vex 3198 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
44 mulassnq 9766 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ·Q 𝑦) ·Q 𝑢) = (𝑥 ·Q (𝑦 ·Q 𝑢))
45 fvex 6188 . . . . . . . . . . . . . . . . . . . 20 (*Q𝑤) ∈ V
4630, 43, 32, 33, 44, 45caov4 6850 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤)))
47 mulidnq 9770 . . . . . . . . . . . . . . . . . . . 20 (1QQ → (1Q ·Q 1Q) = 1Q)
485, 47ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (1Q ·Q 1Q) = 1Q
4942, 46, 483eqtr3g 2677 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q)
50 recclnq 9773 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → (*Q𝑣) ∈ Q)
51 mulclnq 9754 . . . . . . . . . . . . . . . . . . . 20 (((*Q𝑣) ∈ Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
5250, 51sylan 488 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
53 recmulnq 9771 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ·Q 𝑤) ∈ Q → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
5549, 54mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝑣Q𝑤Q) → (*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)))
5655eleq1d 2684 . . . . . . . . . . . . . . . 16 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴 ↔ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴))
5756notbid 308 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → (¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴 ↔ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴))
5857biimprd 238 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → (¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴 → ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
5937, 58anim12d 585 . . . . . . . . . . . . 13 ((𝑣Q𝑤Q) → ((𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) → (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴)))
60 ovex 6663 . . . . . . . . . . . . . . 15 ((*Q𝑣) ·Q 𝑤) ∈ V
61 breq2 4648 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
62 fveq2 6178 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q𝑣) ·Q 𝑤)))
6362eleq1d 2684 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((*Q𝑦) ∈ 𝐴 ↔ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
6463notbid 308 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (¬ (*Q𝑦) ∈ 𝐴 ↔ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
6561, 64anbi12d 746 . . . . . . . . . . . . . . 15 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴)))
6660, 65spcev 3295 . . . . . . . . . . . . . 14 ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
67 ovex 6663 . . . . . . . . . . . . . . 15 ((*Q𝑧) ·Q 𝑤) ∈ V
68 breq1 4647 . . . . . . . . . . . . . . . . 17 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑥 <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q 𝑦))
6968anbi1d 740 . . . . . . . . . . . . . . . 16 (𝑥 = ((*Q𝑧) ·Q 𝑤) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
7069exbidv 1848 . . . . . . . . . . . . . . 15 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
71 reclempr.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
7267, 70, 71elab2 3348 . . . . . . . . . . . . . 14 (((*Q𝑧) ·Q 𝑤) ∈ 𝐵 ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
7366, 72sylibr 224 . . . . . . . . . . . . 13 ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7459, 73syl6 35 . . . . . . . . . . . 12 ((𝑣Q𝑤Q) → ((𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵))
7574imp 445 . . . . . . . . . . 11 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7620, 25, 26, 27, 75syl22anc 1325 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7722brel 5158 . . . . . . . . . . . . 13 (𝑣 <Q 𝑧 → (𝑣Q𝑧Q))
7877simprd 479 . . . . . . . . . . . 12 (𝑣 <Q 𝑧𝑧Q)
79783ad2ant3 1082 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑧Q)
80 mulcomnq 9760 . . . . . . . . . . . . 13 (𝑤 ·Q 1Q) = (1Q ·Q 𝑤)
81 mulidnq 9770 . . . . . . . . . . . . 13 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
8280, 81syl5reqr 2669 . . . . . . . . . . . 12 (𝑤Q𝑤 = (1Q ·Q 𝑤))
83 mulassnq 9766 . . . . . . . . . . . . 13 ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))
84 recidnq 9772 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
8584oveq1d 6650 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
8683, 85syl5reqr 2669 . . . . . . . . . . . 12 (𝑧Q → (1Q ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
8782, 86sylan9eqr 2676 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
8879, 25, 87syl2anc 692 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
89 oveq2 6643 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9089eqeq2d 2630 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9190rspcev 3304 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ 𝐵𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥))
9276, 88, 91syl2anc 692 . . . . . . . . 9 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥))
93923expia 1265 . . . . . . . 8 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (𝑣 <Q 𝑧 → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9493reximdv 3013 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (∃𝑧𝐴 𝑣 <Q 𝑧 → ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9571reclem2pr 9855 . . . . . . . . 9 (𝐴P𝐵P)
96 df-mp 9791 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ {𝑢 ∣ ∃𝑓𝑦𝑔𝑤 𝑢 = (𝑓 ·Q 𝑔)})
97 mulclnq 9754 . . . . . . . . . 10 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
9896, 97genpelv 9807 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9995, 98mpdan 701 . . . . . . . 8 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
10099ad2antrr 761 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
10194, 100sylibrd 249 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (∃𝑧𝐴 𝑣 <Q 𝑧𝑤 ∈ (𝐴 ·P 𝐵)))
10217, 101mpd 15 . . . . 5 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → 𝑤 ∈ (𝐴 ·P 𝐵))
10315, 102rexlimddv 3031 . . . 4 ((𝐴P𝑤 <Q 1Q) → 𝑤 ∈ (𝐴 ·P 𝐵))
104103ex 450 . . 3 (𝐴P → (𝑤 <Q 1Q𝑤 ∈ (𝐴 ·P 𝐵)))
1052, 104syl5bi 232 . 2 (𝐴P → (𝑤 ∈ 1P𝑤 ∈ (𝐴 ·P 𝐵)))
106105ssrdv 3601 1 (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wex 1702  wcel 1988  {cab 2606  wrex 2910  wss 3567   class class class wbr 4644  cfv 5876  (class class class)co 6635  Qcnq 9659  1Qc1q 9660   ·Q cmq 9663  *Qcrq 9664   <Q cltq 9665  Pcnp 9666  1Pc1p 9667   ·P cmp 9669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-omul 7550  df-er 7727  df-ni 9679  df-pli 9680  df-mi 9681  df-lti 9682  df-plpq 9715  df-mpq 9716  df-ltpq 9717  df-enq 9718  df-nq 9719  df-erq 9720  df-plq 9721  df-mq 9722  df-1nq 9723  df-rq 9724  df-ltnq 9725  df-np 9788  df-1p 9789  df-mp 9791
This theorem is referenced by:  reclem4pr  9857
  Copyright terms: Public domain W3C validator