![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version |
Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | recl 14049 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ‘cfv 6049 ℂcc 10126 ℝcr 10127 ℜcre 14036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-2 11271 df-cj 14038 df-re 14039 |
This theorem is referenced by: abstri 14269 sqreulem 14298 eqsqrt2d 14307 rlimrege0 14509 recoscl 15070 cos01bnd 15115 cnsubrg 20008 mbfeqa 23609 mbfss 23612 mbfmulc2re 23614 mbfadd 23627 mbfmulc2 23629 mbflim 23634 mbfmul 23692 iblcn 23764 itgcnval 23765 itgre 23766 itgim 23767 iblneg 23768 itgneg 23769 iblss 23770 itgeqa 23779 iblconst 23783 ibladd 23786 itgadd 23790 iblabs 23794 iblabsr 23795 iblmulc2 23796 itgmulc2 23799 itgabs 23800 itgsplit 23801 dvlip 23955 tanregt0 24484 efif1olem4 24490 eff1olem 24493 lognegb 24535 relog 24542 efiarg 24552 cosarg0d 24554 argregt0 24555 argrege0 24556 abslogle 24563 logcnlem4 24590 cxpsqrtlem 24647 cxpcn3lem 24687 abscxpbnd 24693 cosangneg2d 24736 angrtmuld 24737 lawcoslem1 24744 isosctrlem1 24747 asinlem3a 24796 asinlem3 24797 asinneg 24812 asinsinlem 24817 asinsin 24818 acosbnd 24826 atanlogaddlem 24839 atanlogadd 24840 atanlogsublem 24841 atanlogsub 24842 atantan 24849 o1cxp 24900 cxploglim2 24904 zetacvg 24940 lgamgulmlem2 24955 sqsscirc2 30264 ibladdnc 33780 itgaddnc 33783 iblabsnc 33787 iblmulc2nc 33788 itgmulc2nc 33791 itgabsnc 33792 bddiblnc 33793 ftc1anclem2 33799 ftc1anclem5 33802 ftc1anclem6 33803 ftc1anclem8 33805 cntotbnd 33908 isosctrlem1ALT 39669 iblsplit 40685 |
Copyright terms: Public domain | W3C validator |