![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recl | Structured version Visualization version GIF version |
Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
recl | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reval 14045 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | |
2 | cjth 14042 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) | |
3 | 2 | simpld 477 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℝ) |
4 | 3 | rehalfcld 11471 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) ∈ ℝ) |
5 | 1, 4 | eqeltrd 2839 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 ℝcr 10127 ici 10130 + caddc 10131 · cmul 10133 − cmin 10458 / cdiv 10876 2c2 11262 ∗ccj 14035 ℜcre 14036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-2 11271 df-cj 14038 df-re 14039 |
This theorem is referenced by: imcl 14050 ref 14051 crre 14053 remim 14056 reim0b 14058 rereb 14059 mulre 14060 cjreb 14062 recj 14063 reneg 14064 readd 14065 resub 14066 remullem 14067 remul2 14069 rediv 14070 imcj 14071 imneg 14072 imadd 14073 immul2 14076 cjadd 14080 ipcnval 14082 cjmulval 14084 cjmulge0 14085 cjneg 14086 imval2 14090 cnrecnv 14104 sqeqd 14105 recli 14106 recld 14133 cnpart 14179 absrele 14247 releabs 14260 efeul 15091 absef 15126 absefib 15127 efieq1re 15128 cnsubrg 20008 mbfconst 23601 itgconst 23784 tanregt0 24484 argregt0 24555 tanarg 24564 logf1o2 24595 abscxp 24637 isosctrlem1 24747 asinsin 24818 acoscos 24819 atancj 24836 atantan 24849 cxploglim2 24904 zetacvg 24940 cncph 27983 |
Copyright terms: Public domain | W3C validator |