MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsr Structured version   Visualization version   GIF version

Theorem recexsr 9872
Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsr ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexsr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sqgt0sr 9871 . 2 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
2 recexsrlem 9868 . . . 4 (0R <R (𝐴 ·R 𝐴) → ∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R)
3 mulclsr 9849 . . . . . . 7 ((𝐴R𝑦R) → (𝐴 ·R 𝑦) ∈ R)
4 mulasssr 9855 . . . . . . . . 9 ((𝐴 ·R 𝐴) ·R 𝑦) = (𝐴 ·R (𝐴 ·R 𝑦))
54eqeq1i 2626 . . . . . . . 8 (((𝐴 ·R 𝐴) ·R 𝑦) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R)
6 oveq2 6612 . . . . . . . . . 10 (𝑥 = (𝐴 ·R 𝑦) → (𝐴 ·R 𝑥) = (𝐴 ·R (𝐴 ·R 𝑦)))
76eqeq1d 2623 . . . . . . . . 9 (𝑥 = (𝐴 ·R 𝑦) → ((𝐴 ·R 𝑥) = 1R ↔ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R))
87rspcev 3295 . . . . . . . 8 (((𝐴 ·R 𝑦) ∈ R ∧ (𝐴 ·R (𝐴 ·R 𝑦)) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
95, 8sylan2b 492 . . . . . . 7 (((𝐴 ·R 𝑦) ∈ R ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
103, 9sylan 488 . . . . . 6 (((𝐴R𝑦R) ∧ ((𝐴 ·R 𝐴) ·R 𝑦) = 1R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
1110exp31 629 . . . . 5 (𝐴R → (𝑦R → (((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥R (𝐴 ·R 𝑥) = 1R)))
1211rexlimdv 3023 . . . 4 (𝐴R → (∃𝑦R ((𝐴 ·R 𝐴) ·R 𝑦) = 1R → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
132, 12syl5 34 . . 3 (𝐴R → (0R <R (𝐴 ·R 𝐴) → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
1413imp 445 . 2 ((𝐴R ∧ 0R <R (𝐴 ·R 𝐴)) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
151, 14syldan 487 1 ((𝐴R𝐴 ≠ 0R) → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908   class class class wbr 4613  (class class class)co 6604  Rcnr 9631  0Rc0r 9632  1Rc1r 9633   ·R cmr 9636   <R cltr 9637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ec 7689  df-qs 7693  df-ni 9638  df-pli 9639  df-mi 9640  df-lti 9641  df-plpq 9674  df-mpq 9675  df-ltpq 9676  df-enq 9677  df-nq 9678  df-erq 9679  df-plq 9680  df-mq 9681  df-1nq 9682  df-rq 9683  df-ltnq 9684  df-np 9747  df-1p 9748  df-plp 9749  df-mp 9750  df-ltp 9751  df-enr 9821  df-nr 9822  df-plr 9823  df-mr 9824  df-ltr 9825  df-0r 9826  df-1r 9827  df-m1r 9828
This theorem is referenced by:  axrrecex  9928
  Copyright terms: Public domain W3C validator