![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recexpr | Structured version Visualization version GIF version |
Description: The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
recexpr | ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4807 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑧 <Q 𝑦 ↔ 𝑤 <Q 𝑦)) | |
2 | 1 | anbi1d 743 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ (𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
3 | 2 | exbidv 1999 | . . . 4 ⊢ (𝑧 = 𝑤 → (∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴))) |
4 | 3 | cbvabv 2885 | . . 3 ⊢ {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} = {𝑤 ∣ ∃𝑦(𝑤 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} |
5 | 4 | reclem2pr 10082 | . 2 ⊢ (𝐴 ∈ P → {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P) |
6 | 4 | reclem4pr 10084 | . 2 ⊢ (𝐴 ∈ P → (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) |
7 | oveq2 6822 | . . . 4 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → (𝐴 ·P 𝑥) = (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)})) | |
8 | 7 | eqeq1d 2762 | . . 3 ⊢ (𝑥 = {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} → ((𝐴 ·P 𝑥) = 1P ↔ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P)) |
9 | 8 | rspcev 3449 | . 2 ⊢ (({𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)} ∈ P ∧ (𝐴 ·P {𝑧 ∣ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q‘𝑦) ∈ 𝐴)}) = 1P) → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
10 | 5, 6, 9 | syl2anc 696 | 1 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴 ·P 𝑥) = 1P) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 {cab 2746 ∃wrex 3051 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 *Qcrq 9891 <Q cltq 9892 Pcnp 9893 1Pc1p 9894 ·P cmp 9896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-omul 7735 df-er 7913 df-ni 9906 df-pli 9907 df-mi 9908 df-lti 9909 df-plpq 9942 df-mpq 9943 df-ltpq 9944 df-enq 9945 df-nq 9946 df-erq 9947 df-plq 9948 df-mq 9949 df-1nq 9950 df-rq 9951 df-ltnq 9952 df-np 10015 df-1p 10016 df-mp 10018 |
This theorem is referenced by: recexsrlem 10136 |
Copyright terms: Public domain | W3C validator |