MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccn2 Structured version   Visualization version   GIF version

Theorem reccn2 14534
Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
reccn2.t 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝑇,𝑧

Proof of Theorem reccn2
StepHypRef Expression
1 reccn2.t . . 3 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2))
2 1rp 12038 . . . . 5 1 ∈ ℝ+
3 simpl 468 . . . . . . . 8 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0}))
4 eldifsn 4451 . . . . . . . 8 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
53, 4sylib 208 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6 absrpcl 14235 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
75, 6syl 17 . . . . . 6 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
8 rpmulcl 12057 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
97, 8sylancom 568 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
10 ifcl 4267 . . . . 5 ((1 ∈ ℝ+ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ+) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
112, 9, 10sylancr 567 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
127rphalfcld 12086 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
1311, 12rpmulcld 12090 . . 3 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ∈ ℝ+)
141, 13syl5eqel 2853 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
155adantr 466 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
1615simpld 476 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
17 simprl 746 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ (ℂ ∖ {0}))
18 eldifsn 4451 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
1917, 18sylib 208 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
2019simpld 476 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2116, 20mulcld 10261 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
22 mulne0 10870 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0)) → (𝐴 · 𝑧) ≠ 0)
2315, 19, 22syl2anc 565 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ≠ 0)
2416, 20, 21, 23divsubdird 11041 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
2516mulid1d 10258 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
2625oveq1d 6807 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
27 1cnd 10257 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
28 divcan5 10928 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
2927, 19, 15, 28syl3anc 1475 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3026, 29eqtr3d 2806 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3120mulid1d 10258 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3220, 16mulcomd 10262 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
3331, 32oveq12d 6810 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
34 divcan5 10928 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
3527, 15, 19, 34syl3anc 1475 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
3633, 35eqtr3d 2806 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
3730, 36oveq12d 6810 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
3824, 37eqtrd 2804 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
3938fveq2d 6336 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4016, 20subcld 10593 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4140, 21, 23absdivd 14401 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4239, 41eqtr3d 2806 . . . . 5 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4316, 20abssubd 14399 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
4420, 16subcld 10593 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
4544abscld 14382 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
4643, 45eqeltrd 2849 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
4714adantr 466 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
4847rpred 12074 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
4921abscld 14382 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
50 rpre 12041 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
5150ad2antlr 698 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5249, 51remulcld 10271 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
53 simprr 748 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5443, 53eqbrtrd 4806 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
559adantr 466 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
5655rpred 12074 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
5712adantr 466 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
5857rpred 12074 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
5956, 58remulcld 10271 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
60 1re 10240 . . . . . . . . . . 11 1 ∈ ℝ
61 min2 12225 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵))
6260, 56, 61sylancr 567 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵))
6311adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
6463rpred 12074 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ)
6564, 56, 57lemul1d 12117 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵) ↔ (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6662, 65mpbid 222 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
671, 66syl5eqbr 4819 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
6820abscld 14382 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
6916abscld 14382 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7069recnd 10269 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
71702halvesd 11479 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7269, 68resubcld 10659 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7316, 20abs2difd 14403 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
74 min1 12224 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1)
7560, 56, 74sylancr 567 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1)
76 1red 10256 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
7764, 76, 57lemul1d 12117 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1 ↔ (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
7875, 77mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
791, 78syl5eqbr 4819 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8058recnd 10269 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8180mulid2d 10259 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8279, 81breqtrd 4810 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8346, 48, 58, 54, 82ltletrd 10398 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
8472, 46, 58, 73, 83lelttrd 10396 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
8569, 68, 58ltsubadd2d 10826 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
8684, 85mpbid 222 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
8771, 86eqbrtrd 4806 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
8858, 68, 58ltadd1d 10821 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
8987, 88mpbird 247 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9058, 68, 55, 89ltmul2dd 12130 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9116, 20absmuld 14400 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9291oveq1d 6807 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9368recnd 10269 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
9451recnd 10269 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
9570, 93, 94mul32d 10447 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9692, 95eqtrd 2804 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9790, 96breqtrrd 4812 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
9848, 59, 52, 67, 97lelttrd 10396 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
9946, 48, 52, 54, 98lttrd 10399 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10021, 23absrpcld 14394 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10146, 51, 100ltdivmuld 12125 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
10299, 101mpbird 247 . . . . 5 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10342, 102eqbrtrd 4806 . . . 4 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
104103expr 444 . . 3 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ (ℂ ∖ {0})) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
105104ralrimiva 3114 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
106 breq2 4788 . . . . 5 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
107106imbi1d 330 . . . 4 (𝑦 = 𝑇 → (((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵) ↔ ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)))
108107ralbidv 3134 . . 3 (𝑦 = 𝑇 → (∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵) ↔ ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)))
109108rspcev 3458 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
11014, 105, 109syl2anc 565 1 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  wrex 3061  cdif 3718  ifcif 4223  {csn 4314   class class class wbr 4784  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142   < clt 10275  cle 10276  cmin 10467   / cdiv 10885  2c2 11271  +crp 12034  abscabs 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183
This theorem is referenced by:  rlimdiv  14583  divcn  22890  climrec  40347
  Copyright terms: Public domain W3C validator