MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recclnq Structured version   Visualization version   GIF version

Theorem recclnq 9476
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recclnq (𝐴Q → (*Q𝐴) ∈ Q)

Proof of Theorem recclnq
StepHypRef Expression
1 recidnq 9475 . . . 4 (𝐴Q → (𝐴 ·Q (*Q𝐴)) = 1Q)
2 1nq 9438 . . . 4 1QQ
31, 2syl6eqel 2591 . . 3 (𝐴Q → (𝐴 ·Q (*Q𝐴)) ∈ Q)
4 mulnqf 9459 . . . . 5 ·Q :(Q × Q)⟶Q
54fdmi 5791 . . . 4 dom ·Q = (Q × Q)
6 0nnq 9434 . . . 4 ¬ ∅ ∈ Q
75, 6ndmovrcl 6530 . . 3 ((𝐴 ·Q (*Q𝐴)) ∈ Q → (𝐴Q ∧ (*Q𝐴) ∈ Q))
83, 7syl 17 . 2 (𝐴Q → (𝐴Q ∧ (*Q𝐴) ∈ Q))
98simprd 472 1 (𝐴Q → (*Q𝐴) ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 378  wcel 1937   × cxp 4878  cfv 5633  (class class class)co 6363  Qcnq 9362  1Qc1q 9363   ·Q cmq 9366  *Qcrq 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3758  df-if 3909  df-pw 3980  df-sn 3996  df-pr 3998  df-tp 4000  df-op 4002  df-uni 4229  df-iun 4309  df-br 4435  df-opab 4494  df-mpt 4495  df-tr 4531  df-eprel 4791  df-id 4795  df-po 4801  df-so 4802  df-fr 4839  df-we 4841  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-pred 5431  df-ord 5477  df-on 5478  df-lim 5479  df-suc 5480  df-iota 5597  df-fun 5635  df-fn 5636  df-f 5637  df-f1 5638  df-fo 5639  df-f1o 5640  df-fv 5641  df-ov 6366  df-oprab 6367  df-mpt2 6368  df-om 6770  df-1st 6870  df-2nd 6871  df-wrecs 7105  df-recs 7167  df-rdg 7205  df-1o 7259  df-oadd 7263  df-omul 7264  df-er 7440  df-ni 9382  df-mi 9384  df-lti 9385  df-mpq 9419  df-enq 9421  df-nq 9422  df-erq 9423  df-mq 9425  df-1nq 9426  df-rq 9427
This theorem is referenced by:  recrecnq  9477  dmrecnq  9478  halfnq  9486  ltrnq  9489  mulclprlem  9529  prlem934  9543  prlem936  9557  reclem2pr  9558  reclem3pr  9559  reclem4pr  9560
  Copyright terms: Public domain W3C validator