![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reccld | Structured version Visualization version GIF version |
Description: Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
reccld.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
reccld | ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | reccld.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | reccl 10904 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ≠ wne 2932 (class class class)co 6814 ℂcc 10146 0cc0 10148 1c1 10149 / cdiv 10896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 |
This theorem is referenced by: recgt0 11079 expmulz 13120 rlimdiv 14595 rlimno1 14603 isumdivc 14714 fsumdivc 14737 geolim 14820 georeclim 14822 clim2div 14840 prodfdiv 14847 dvmptdivc 23947 dvmptdiv 23956 dvexp3 23960 logtayl 24626 dvcncxp1 24704 cxpeq 24718 logbrec 24740 ang180lem1 24759 ang180lem2 24760 ang180lem3 24761 isosctrlem2 24769 dvatan 24882 efrlim 24916 amgm 24937 lgamgulmlem2 24976 lgamgulmlem3 24977 igamf 24997 igamcl 24998 lgam1 25010 dchrinvcl 25198 dchrabs 25205 2lgslem3c 25343 dchrmusumlem 25431 vmalogdivsum2 25447 pntrlog2bndlem2 25487 pntrlog2bndlem6 25492 nmlno0lem 27978 nmlnop0iALT 29184 branmfn 29294 leopmul 29323 logdivsqrle 31058 dvtan 33791 dvasin 33827 areacirclem1 33831 areacirclem4 33834 pell14qrdich 37953 mpaaeu 38240 areaquad 38322 hashnzfzclim 39041 binomcxplemnotnn0 39075 oddfl 40006 climrec 40356 climdivf 40365 reclimc 40406 divlimc 40409 ioodvbdlimc1lem2 40668 ioodvbdlimc2lem 40670 stoweidlem7 40745 stoweidlem37 40775 wallispilem4 40806 wallispi 40808 wallispi2lem1 40809 stirlinglem1 40812 stirlinglem3 40814 stirlinglem4 40815 stirlinglem5 40816 stirlinglem7 40818 stirlinglem10 40821 stirlinglem11 40822 stirlinglem12 40823 stirlinglem15 40826 dirkertrigeq 40839 fourierdlem30 40875 fourierdlem83 40927 fourierdlem95 40939 seccl 43022 csccl 43023 young2d 43082 |
Copyright terms: Public domain | W3C validator |