![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version |
Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | readdcl 10232 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2140 (class class class)co 6815 ℝcr 10148 + caddc 10152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 10210 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: resubcli 10556 eqneg 10958 ledivp1i 11162 ltdivp1i 11163 2re 11303 3re 11307 4re 11310 5re 11312 6re 11314 7re 11316 8re 11318 9re 11320 10reOLD 11322 numltc 11741 nn0opthlem2 13271 hashunlei 13425 hashge2el2dif 13475 abs3lemi 14369 ef01bndlem 15134 divalglem6 15344 log2ub 24897 mumullem2 25127 bposlem8 25237 dchrvmasumlem2 25408 ex-fl 27637 norm-ii-i 28325 norm3lem 28337 nmoptrii 29284 bdophsi 29286 unierri 29294 staddi 29436 stadd3i 29438 dp2ltc 29925 dpmul4 29953 ballotlem2 30881 hgt750lem 31060 poimirlem16 33757 itg2addnclem3 33795 fdc 33873 pellqrex 37964 stirlinglem11 40823 fouriersw 40970 zm1nn 41845 evengpoap3 42216 |
Copyright terms: Public domain | W3C validator |