![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdgsucg | Structured version Visualization version GIF version |
Description: The value of the recursive definition generator at a successor. (Contributed by NM, 16-Nov-2014.) |
Ref | Expression |
---|---|
rdgsucg | ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgdmlim 7558 | . . 3 ⊢ Lim dom rec(𝐹, 𝐴) | |
2 | limsuc 7091 | . . 3 ⊢ (Lim dom rec(𝐹, 𝐴) → (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) ↔ suc 𝐵 ∈ dom rec(𝐹, 𝐴)) |
4 | eqid 2651 | . . 3 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
5 | rdgvalg 7560 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘𝑦) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ 𝑦))) | |
6 | rdgseg 7563 | . . 3 ⊢ (𝑦 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝑦) ∈ V) | |
7 | rdgfun 7557 | . . . 4 ⊢ Fun rec(𝐹, 𝐴) | |
8 | funfn 5956 | . . . 4 ⊢ (Fun rec(𝐹, 𝐴) ↔ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴)) | |
9 | 7, 8 | mpbi 220 | . . 3 ⊢ rec(𝐹, 𝐴) Fn dom rec(𝐹, 𝐴) |
10 | limord 5822 | . . . 4 ⊢ (Lim dom rec(𝐹, 𝐴) → Ord dom rec(𝐹, 𝐴)) | |
11 | 1, 10 | ax-mp 5 | . . 3 ⊢ Ord dom rec(𝐹, 𝐴) |
12 | 4, 5, 6, 9, 11 | tz7.44-2 7548 | . 2 ⊢ (suc 𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
13 | 3, 12 | sylbi 207 | 1 ⊢ (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 ifcif 4119 ∪ cuni 4468 ↦ cmpt 4762 dom cdm 5143 ran crn 5144 Ord word 5760 Lim wlim 5762 suc csuc 5763 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 reccrdg 7550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-wrecs 7452 df-recs 7513 df-rdg 7551 |
This theorem is referenced by: rdgsuc 7565 rdgsucmptnf 7570 frsuc 7577 r1sucg 8670 |
Copyright terms: Public domain | W3C validator |