MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgseg Structured version   Visualization version   GIF version

Theorem rdgseg 7689
Description: The initial segments of the recursive definition generator are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rdgseg (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)

Proof of Theorem rdgseg
Dummy variables 𝑥 𝑦 𝑓 𝑔 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rdg 7677 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
21reseq1i 5548 . 2 (rec(𝐹, 𝐴) ↾ 𝐵) = (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵)
3 rdglem1 7682 . . . 4 {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑣𝑦 (𝑤𝑣) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑤𝑣)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))}
43tfrlem9a 7653 . . 3 (𝐵 ∈ dom recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) → (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵) ∈ V)
51dmeqi 5481 . . 3 dom rec(𝐹, 𝐴) = dom recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
64, 5eleq2s 2858 . 2 (𝐵 ∈ dom rec(𝐹, 𝐴) → (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵) ∈ V)
72, 6syl5eqel 2844 1 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  {cab 2747  wral 3051  wrex 3052  Vcvv 3341  c0 4059  ifcif 4231   cuni 4589  cmpt 4882  dom cdm 5267  ran crn 5268  cres 5269  Oncon0 5885  Lim wlim 5886   Fn wfn 6045  cfv 6050  recscrecs 7638  reccrdg 7676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-iota 6013  df-fun 6052  df-fn 6053  df-fv 6058  df-wrecs 7578  df-recs 7639  df-rdg 7677
This theorem is referenced by:  rdgsucg  7690  rdglimg  7692
  Copyright terms: Public domain W3C validator