MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq2 Structured version   Visualization version   GIF version

Theorem rdgeq2 7493
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq2 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))

Proof of Theorem rdgeq2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ifeq1 4081 . . . 4 (𝐴 = 𝐵 → if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
21mpteq2dv 4736 . . 3 (𝐴 = 𝐵 → (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
3 recseq 7455 . . 3 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
42, 3syl 17 . 2 (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))))
5 df-rdg 7491 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
6 df-rdg 7491 . 2 rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐵, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
74, 5, 63eqtr4g 2679 1 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  Vcvv 3195  c0 3907  ifcif 4077   cuni 4427  cmpt 4720  dom cdm 5104  ran crn 5105  Lim wlim 5712  cfv 5876  recscrecs 7452  reccrdg 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-xp 5110  df-cnv 5112  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-iota 5839  df-fv 5884  df-wrecs 7392  df-recs 7453  df-rdg 7491
This theorem is referenced by:  rdgeq12  7494  rdg0g  7508  oav  7576  itunifval  9223  hsmex  9239  ltweuz  12743  seqeq1  12787  dfrdg2  31675  trpredeq3  31696  finxpeq2  33195  finxpreclem6  33204  finxpsuclem  33205
  Copyright terms: Public domain W3C validator