![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdg0g | Structured version Visualization version GIF version |
Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
rdg0g | ⊢ (𝐴 ∈ 𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgeq2 7665 | . . . 4 ⊢ (𝑥 = 𝐴 → rec(𝐹, 𝑥) = rec(𝐹, 𝐴)) | |
2 | 1 | fveq1d 6342 | . . 3 ⊢ (𝑥 = 𝐴 → (rec(𝐹, 𝑥)‘∅) = (rec(𝐹, 𝐴)‘∅)) |
3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2763 | . 2 ⊢ (𝑥 = 𝐴 → ((rec(𝐹, 𝑥)‘∅) = 𝑥 ↔ (rec(𝐹, 𝐴)‘∅) = 𝐴)) |
5 | vex 3331 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | rdg0 7674 | . 2 ⊢ (rec(𝐹, 𝑥)‘∅) = 𝑥 |
7 | 4, 6 | vtoclg 3394 | 1 ⊢ (𝐴 ∈ 𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 ∅c0 4046 ‘cfv 6037 reccrdg 7662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-om 7219 df-wrecs 7564 df-recs 7625 df-rdg 7663 |
This theorem is referenced by: fr0g 7688 oa0 7753 findreccl 32729 |
Copyright terms: Public domain | W3C validator |