![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rddif | Structured version Visualization version GIF version |
Description: The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
Ref | Expression |
---|---|
rddif | ⊢ (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfcn 11459 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℂ | |
2 | 1 | 2timesi 11359 | . . . . . . 7 ⊢ (2 · (1 / 2)) = ((1 / 2) + (1 / 2)) |
3 | 2cn 11303 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
4 | 2ne0 11325 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
5 | 3, 4 | recidi 10968 | . . . . . . 7 ⊢ (2 · (1 / 2)) = 1 |
6 | 2, 5 | eqtr3i 2784 | . . . . . 6 ⊢ ((1 / 2) + (1 / 2)) = 1 |
7 | 6 | oveq2i 6825 | . . . . 5 ⊢ ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = ((𝐴 − (1 / 2)) + 1) |
8 | recn 10238 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ) |
10 | 8, 9, 9 | nppcan3d 10631 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = (𝐴 + (1 / 2))) |
11 | 7, 10 | syl5eqr 2808 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) = (𝐴 + (1 / 2))) |
12 | halfre 11458 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
13 | readdcl 10231 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ) | |
14 | 12, 13 | mpan2 709 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ) |
15 | fllep1 12816 | . . . . 5 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)) |
17 | 11, 16 | eqbrtrd 4826 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)) |
18 | resubcl 10557 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 − (1 / 2)) ∈ ℝ) | |
19 | 12, 18 | mpan2 709 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ∈ ℝ) |
20 | reflcl 12811 | . . . . 5 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
21 | 14, 20 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
22 | 1red 10267 | . . . 4 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℝ) | |
23 | 19, 21, 22 | leadd1d 10833 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ↔ ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))) |
24 | 17, 23 | mpbird 247 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2)))) |
25 | flle 12814 | . . 3 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2))) | |
26 | 14, 25 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2))) |
27 | id 22 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
28 | 12 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ) |
29 | absdifle 14277 | . . 3 ⊢ (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2))))) | |
30 | 21, 27, 28, 29 | syl3anc 1477 | . 2 ⊢ (𝐴 ∈ ℝ → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2))))) |
31 | 24, 26, 30 | mpbir2and 995 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 ℝcr 10147 1c1 10149 + caddc 10151 · cmul 10153 ≤ cle 10287 − cmin 10478 / cdiv 10896 2c2 11282 ⌊cfl 12805 abscabs 14193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-fl 12807 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 |
This theorem is referenced by: absrdbnd 14300 rddif2 32794 dnibndlem11 32805 knoppcnlem4 32813 cntotbnd 33926 |
Copyright terms: Public domain | W3C validator |