Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankvalg Structured version   Visualization version   GIF version

Theorem rankvalg 8844
 Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 8843 expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003.)
Assertion
Ref Expression
rankvalg (𝐴𝑉 → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem rankvalg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6332 . . 3 (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴))
2 eleq1 2838 . . . . 5 (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝑥)))
32rabbidv 3339 . . . 4 (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
43inteqd 4616 . . 3 (𝑦 = 𝐴 {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
51, 4eqeq12d 2786 . 2 (𝑦 = 𝐴 → ((rank‘𝑦) = {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} ↔ (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
6 vex 3354 . . 3 𝑦 ∈ V
76rankval 8843 . 2 (rank‘𝑦) = {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)}
85, 7vtoclg 3417 1 (𝐴𝑉 → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145  {crab 3065  ∩ cint 4611  Oncon0 5866  suc csuc 5868  ‘cfv 6031  𝑅1cr1 8789  rankcrnk 8790 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-reg 8653  ax-inf2 8702 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-r1 8791  df-rank 8792 This theorem is referenced by:  rankval2  8845
 Copyright terms: Public domain W3C validator