![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankvalb | Structured version Visualization version GIF version |
Description: Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 8843 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
Ref | Expression |
---|---|
rankvalb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3364 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ V) | |
2 | rankwflemb 8820 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
3 | intexrab 4954 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) ↔ ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V) | |
4 | 2, 3 | sylbb 209 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V) |
5 | eleq1 2838 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝑥))) | |
6 | 5 | rabbidv 3339 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
7 | 6 | inteqd 4616 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)} = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
8 | df-rank 8792 | . . 3 ⊢ rank = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ On ∣ 𝑦 ∈ (𝑅1‘suc 𝑥)}) | |
9 | 7, 8 | fvmptg 6422 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} ∈ V) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
10 | 1, 4, 9 | syl2anc 573 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 {crab 3065 Vcvv 3351 ∪ cuni 4574 ∩ cint 4611 “ cima 5252 Oncon0 5866 suc csuc 5868 ‘cfv 6031 𝑅1cr1 8789 rankcrnk 8790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-r1 8791 df-rank 8792 |
This theorem is referenced by: rankr1ai 8825 rankidb 8827 rankval 8843 |
Copyright terms: Public domain | W3C validator |