Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval4 Structured version   Visualization version   GIF version

Theorem rankval4 8768
 Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. (Contributed by NM, 12-Oct-2003.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankval4 (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2793 . . . . . 6 𝑥𝐴
2 nfcv 2793 . . . . . . 7 𝑥𝑅1
3 nfiu1 4582 . . . . . . 7 𝑥 𝑥𝐴 suc (rank‘𝑥)
42, 3nffv 6236 . . . . . 6 𝑥(𝑅1 𝑥𝐴 suc (rank‘𝑥))
51, 4dfss2f 3627 . . . . 5 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
6 vex 3234 . . . . . . 7 𝑥 ∈ V
76rankid 8734 . . . . . 6 𝑥 ∈ (𝑅1‘suc (rank‘𝑥))
8 ssiun2 4595 . . . . . . . 8 (𝑥𝐴 → suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥))
9 rankon 8696 . . . . . . . . . 10 (rank‘𝑥) ∈ On
109onsuci 7080 . . . . . . . . 9 suc (rank‘𝑥) ∈ On
11 rankr1b.1 . . . . . . . . . 10 𝐴 ∈ V
1210rgenw 2953 . . . . . . . . . 10 𝑥𝐴 suc (rank‘𝑥) ∈ On
13 iunon 7481 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ∀𝑥𝐴 suc (rank‘𝑥) ∈ On) → 𝑥𝐴 suc (rank‘𝑥) ∈ On)
1411, 12, 13mp2an 708 . . . . . . . . 9 𝑥𝐴 suc (rank‘𝑥) ∈ On
15 r1ord3 8683 . . . . . . . . 9 ((suc (rank‘𝑥) ∈ On ∧ 𝑥𝐴 suc (rank‘𝑥) ∈ On) → (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
1610, 14, 15mp2an 708 . . . . . . . 8 (suc (rank‘𝑥) ⊆ 𝑥𝐴 suc (rank‘𝑥) → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
178, 16syl 17 . . . . . . 7 (𝑥𝐴 → (𝑅1‘suc (rank‘𝑥)) ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
1817sseld 3635 . . . . . 6 (𝑥𝐴 → (𝑥 ∈ (𝑅1‘suc (rank‘𝑥)) → 𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥))))
197, 18mpi 20 . . . . 5 (𝑥𝐴𝑥 ∈ (𝑅1 𝑥𝐴 suc (rank‘𝑥)))
205, 19mpgbir 1766 . . . 4 𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥))
21 fvex 6239 . . . . 5 (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ V
2221rankss 8750 . . . 4 (𝐴 ⊆ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) → (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))))
2320, 22ax-mp 5 . . 3 (rank‘𝐴) ⊆ (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥)))
24 r1ord3 8683 . . . . . . 7 (( 𝑥𝐴 suc (rank‘𝑥) ∈ On ∧ 𝑦 ∈ On) → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2514, 24mpan 706 . . . . . 6 (𝑦 ∈ On → ( 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦 → (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)))
2625ss2rabi 3717 . . . . 5 {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)}
27 intss 4530 . . . . 5 ({𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} ⊆ {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} → {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦})
2826, 27ax-mp 5 . . . 4 {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)} ⊆ {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦}
29 rankval2 8719 . . . . 5 ((𝑅1 𝑥𝐴 suc (rank‘𝑥)) ∈ V → (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)})
3021, 29ax-mp 5 . . . 4 (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) = {𝑦 ∈ On ∣ (𝑅1 𝑥𝐴 suc (rank‘𝑥)) ⊆ (𝑅1𝑦)}
31 intmin 4529 . . . . . 6 ( 𝑥𝐴 suc (rank‘𝑥) ∈ On → {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥))
3214, 31ax-mp 5 . . . . 5 {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦} = 𝑥𝐴 suc (rank‘𝑥)
3332eqcomi 2660 . . . 4 𝑥𝐴 suc (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥𝐴 suc (rank‘𝑥) ⊆ 𝑦}
3428, 30, 333sstr4i 3677 . . 3 (rank‘(𝑅1 𝑥𝐴 suc (rank‘𝑥))) ⊆ 𝑥𝐴 suc (rank‘𝑥)
3523, 34sstri 3645 . 2 (rank‘𝐴) ⊆ 𝑥𝐴 suc (rank‘𝑥)
36 iunss 4593 . . 3 ( 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴) ↔ ∀𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴))
3711rankel 8740 . . . 4 (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))
38 rankon 8696 . . . . 5 (rank‘𝐴) ∈ On
399, 38onsucssi 7083 . . . 4 ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ⊆ (rank‘𝐴))
4037, 39sylib 208 . . 3 (𝑥𝐴 → suc (rank‘𝑥) ⊆ (rank‘𝐴))
4136, 40mprgbir 2956 . 2 𝑥𝐴 suc (rank‘𝑥) ⊆ (rank‘𝐴)
4235, 41eqssi 3652 1 (rank‘𝐴) = 𝑥𝐴 suc (rank‘𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  ∀wral 2941  {crab 2945  Vcvv 3231   ⊆ wss 3607  ∩ cint 4507  ∪ ciun 4552  Oncon0 5761  suc csuc 5763  ‘cfv 5926  𝑅1cr1 8663  rankcrnk 8664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-r1 8665  df-rank 8666 This theorem is referenced by:  rankbnd  8769  rankc1  8771
 Copyright terms: Public domain W3C validator