Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval2 Structured version   Visualization version   GIF version

Theorem rankval2 8854
 Description: Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. (Contributed by NM, 8-Oct-2003.)
Assertion
Ref Expression
rankval2 (𝐴𝐵 → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1𝑥)})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rankval2
StepHypRef Expression
1 rankvalg 8853 . 2 (𝐴𝐵 → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
2 r1suc 8806 . . . . . 6 (𝑥 ∈ On → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
32eleq2d 2825 . . . . 5 (𝑥 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ 𝒫 (𝑅1𝑥)))
4 fvex 6362 . . . . . 6 (𝑅1𝑥) ∈ V
54elpw2 4977 . . . . 5 (𝐴 ∈ 𝒫 (𝑅1𝑥) ↔ 𝐴 ⊆ (𝑅1𝑥))
63, 5syl6bb 276 . . . 4 (𝑥 ∈ On → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ⊆ (𝑅1𝑥)))
76rabbiia 3324 . . 3 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1𝑥)}
87inteqi 4631 . 2 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} = {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1𝑥)}
91, 8syl6eq 2810 1 (𝐴𝐵 → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1𝑥)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1632   ∈ wcel 2139  {crab 3054   ⊆ wss 3715  𝒫 cpw 4302  ∩ cint 4627  Oncon0 5884  suc csuc 5886  ‘cfv 6049  𝑅1cr1 8798  rankcrnk 8799 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-reg 8662  ax-inf2 8711 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-r1 8800  df-rank 8801 This theorem is referenced by:  rankval4  8903
 Copyright terms: Public domain W3C validator