![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankr1clem | Structured version Visualization version GIF version |
Description: Lemma for rankr1c 8845. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1clem | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1ag 8826 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | |
2 | 1 | notbid 307 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ ¬ (rank‘𝐴) ∈ 𝐵)) |
3 | r1funlim 8790 | . . . . . . 7 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
4 | 3 | simpri 481 | . . . . . 6 ⊢ Lim dom 𝑅1 |
5 | limord 5933 | . . . . . 6 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ Ord dom 𝑅1 |
7 | ordelon 5896 | . . . . 5 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) | |
8 | 6, 7 | mpan 708 | . . . 4 ⊢ (𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On) |
9 | 8 | adantl 473 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On) |
10 | rankon 8819 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
11 | ontri1 5906 | . . 3 ⊢ ((𝐵 ∈ On ∧ (rank‘𝐴) ∈ On) → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵)) | |
12 | 9, 10, 11 | sylancl 697 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵)) |
13 | 2, 12 | bitr4d 271 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2127 ⊆ wss 3703 ∪ cuni 4576 dom cdm 5254 “ cima 5257 Ord word 5871 Oncon0 5872 Lim wlim 5873 Fun wfun 6031 ‘cfv 6037 𝑅1cr1 8786 rankcrnk 8787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-om 7219 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-r1 8788 df-rank 8789 |
This theorem is referenced by: rankr1c 8845 ssrankr1 8859 |
Copyright terms: Public domain | W3C validator |