MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1clem Structured version   Visualization version   GIF version

Theorem rankr1clem 8844
Description: Lemma for rankr1c 8845. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1clem ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ 𝐵 ⊆ (rank‘𝐴)))

Proof of Theorem rankr1clem
StepHypRef Expression
1 rankr1ag 8826 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
21notbid 307 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
3 r1funlim 8790 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
43simpri 481 . . . . . 6 Lim dom 𝑅1
5 limord 5933 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
64, 5ax-mp 5 . . . . 5 Ord dom 𝑅1
7 ordelon 5896 . . . . 5 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
86, 7mpan 708 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
98adantl 473 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
10 rankon 8819 . . 3 (rank‘𝐴) ∈ On
11 ontri1 5906 . . 3 ((𝐵 ∈ On ∧ (rank‘𝐴) ∈ On) → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
129, 10, 11sylancl 697 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ 𝐵))
132, 12bitr4d 271 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ 𝐵 ⊆ (rank‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2127  wss 3703   cuni 4576  dom cdm 5254  cima 5257  Ord word 5871  Oncon0 5872  Lim wlim 5873  Fun wfun 6031  cfv 6037  𝑅1cr1 8786  rankcrnk 8787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-om 7219  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-r1 8788  df-rank 8789
This theorem is referenced by:  rankr1c  8845  ssrankr1  8859
  Copyright terms: Public domain W3C validator