MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankpwi Structured version   Visualization version   GIF version

Theorem rankpwi 8859
Description: The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 3-Jun-2013.)
Assertion
Ref Expression
rankpwi (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))

Proof of Theorem rankpwi
StepHypRef Expression
1 rankidn 8858 . . . 4 (𝐴 (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
2 rankon 8831 . . . . . . 7 (rank‘𝐴) ∈ On
3 r1suc 8806 . . . . . . 7 ((rank‘𝐴) ∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
42, 3ax-mp 5 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
54eleq2i 2831 . . . . 5 (𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
6 elpwi 4312 . . . . . 6 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) → 𝒫 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
7 pwidg 4317 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴)
8 ssel 3738 . . . . . 6 (𝒫 𝐴 ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ 𝒫 𝐴𝐴 ∈ (𝑅1‘(rank‘𝐴))))
96, 7, 8syl2imc 41 . . . . 5 (𝐴 (𝑅1 “ On) → (𝒫 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
105, 9syl5bi 232 . . . 4 (𝐴 (𝑅1 “ On) → (𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴))))
111, 10mtod 189 . . 3 (𝐴 (𝑅1 “ On) → ¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
12 r1rankidb 8840 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
13 sspwb 5066 . . . . . . 7 (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
1412, 13sylib 208 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
1514, 4syl6sseqr 3793 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
16 fvex 6362 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) ∈ V
1716elpw2 4977 . . . . 5 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
1815, 17sylibr 224 . . . 4 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)))
192onsuci 7203 . . . . 5 suc (rank‘𝐴) ∈ On
20 r1suc 8806 . . . . 5 (suc (rank‘𝐴) ∈ On → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)))
2119, 20ax-mp 5 . . . 4 (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))
2218, 21syl6eleqr 2850 . . 3 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))
23 pwwf 8843 . . . 4 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
24 rankr1c 8857 . . . 4 (𝒫 𝐴 (𝑅1 “ On) → (suc (rank‘𝐴) = (rank‘𝒫 𝐴) ↔ (¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))))
2523, 24sylbi 207 . . 3 (𝐴 (𝑅1 “ On) → (suc (rank‘𝐴) = (rank‘𝒫 𝐴) ↔ (¬ 𝒫 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))))
2611, 22, 25mpbir2and 995 . 2 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = (rank‘𝒫 𝐴))
2726eqcomd 2766 1 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wss 3715  𝒫 cpw 4302   cuni 4588  cima 5269  Oncon0 5884  suc csuc 5886  cfv 6049  𝑅1cr1 8798  rankcrnk 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-r1 8800  df-rank 8801
This theorem is referenced by:  rankpw  8879  r1pw  8881  r1pwcl  8883
  Copyright terms: Public domain W3C validator