MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranklim Structured version   Visualization version   GIF version

Theorem ranklim 8880
Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.)
Assertion
Ref Expression
ranklim (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))

Proof of Theorem ranklim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsuc 7214 . . . 4 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
21adantl 473 . . 3 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
3 pweq 4305 . . . . . . . 8 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
43fveq2d 6356 . . . . . . 7 (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴))
5 fveq2 6352 . . . . . . . 8 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
6 suceq 5951 . . . . . . . 8 ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴))
75, 6syl 17 . . . . . . 7 (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴))
84, 7eqeq12d 2775 . . . . . 6 (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴)))
9 vex 3343 . . . . . . 7 𝑥 ∈ V
109rankpw 8879 . . . . . 6 (rank‘𝒫 𝑥) = suc (rank‘𝑥)
118, 10vtoclg 3406 . . . . 5 (𝐴 ∈ V → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1211eleq1d 2824 . . . 4 (𝐴 ∈ V → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1312adantr 472 . . 3 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
142, 13bitr4d 271 . 2 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
15 fvprc 6346 . . . . 5 𝐴 ∈ V → (rank‘𝐴) = ∅)
16 pwexb 7140 . . . . . 6 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
17 fvprc 6346 . . . . . 6 (¬ 𝒫 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅)
1816, 17sylnbi 319 . . . . 5 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅)
1915, 18eqtr4d 2797 . . . 4 𝐴 ∈ V → (rank‘𝐴) = (rank‘𝒫 𝐴))
2019eleq1d 2824 . . 3 𝐴 ∈ V → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2120adantr 472 . 2 ((¬ 𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2214, 21pm2.61ian 866 1 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  c0 4058  𝒫 cpw 4302  Lim wlim 5885  suc csuc 5886  cfv 6049  rankcrnk 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-reg 8662  ax-inf2 8711
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-r1 8800  df-rank 8801
This theorem is referenced by:  rankxplim  8915
  Copyright terms: Public domain W3C validator