MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankeq0b Structured version   Visualization version   GIF version

Theorem rankeq0b 8885
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankeq0b (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))

Proof of Theorem rankeq0b
StepHypRef Expression
1 fveq2 6331 . . 3 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
2 r1funlim 8791 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 482 . . . . . 6 Lim dom 𝑅1
4 limomss 7215 . . . . . 6 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
53, 4ax-mp 5 . . . . 5 ω ⊆ dom 𝑅1
6 peano1 7230 . . . . 5 ∅ ∈ ω
75, 6sselii 3746 . . . 4 ∅ ∈ dom 𝑅1
8 rankonid 8854 . . . 4 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
97, 8mpbi 220 . . 3 (rank‘∅) = ∅
101, 9syl6eq 2819 . 2 (𝐴 = ∅ → (rank‘𝐴) = ∅)
11 eqimss 3803 . . . . . . 7 ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅)
1211adantl 474 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅)
13 simpl 475 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 (𝑅1 “ On))
14 rankr1bg 8828 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1513, 7, 14sylancl 694 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1612, 15mpbird 247 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅))
17 r10 8793 . . . . 5 (𝑅1‘∅) = ∅
1816, 17syl6sseq 3797 . . . 4 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅)
19 ss0 4115 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
2018, 19syl 17 . . 3 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅)
2120ex 448 . 2 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅))
2210, 21impbid2 216 1 (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1629  wcel 2143  wss 3720  c0 4060   cuni 4571  dom cdm 5248  cima 5251  Oncon0 5865  Lim wlim 5866  Fun wfun 6024  cfv 6030  ωcom 7210  𝑅1cr1 8787  rankcrnk 8788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-ral 3064  df-rex 3065  df-reu 3066  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-int 4609  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-om 7211  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-r1 8789  df-rank 8790
This theorem is referenced by:  rankeq0  8886
  Copyright terms: Public domain W3C validator