![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankelb | Structured version Visualization version GIF version |
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankelb | ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1elssi 8841 | . . . . . 6 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ ∪ (𝑅1 “ On)) | |
2 | 1 | sseld 3743 | . . . . 5 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ (𝑅1 “ On))) |
3 | rankidn 8858 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) | |
4 | 2, 3 | syl6 35 | . . . 4 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
5 | 4 | imp 444 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) |
6 | rankon 8831 | . . . . 5 ⊢ (rank‘𝐵) ∈ On | |
7 | rankon 8831 | . . . . 5 ⊢ (rank‘𝐴) ∈ On | |
8 | ontri1 5918 | . . . . 5 ⊢ (((rank‘𝐵) ∈ On ∧ (rank‘𝐴) ∈ On) → ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵))) | |
9 | 6, 7, 8 | mp2an 710 | . . . 4 ⊢ ((rank‘𝐵) ⊆ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ∈ (rank‘𝐵)) |
10 | rankdmr1 8837 | . . . . . 6 ⊢ (rank‘𝐵) ∈ dom 𝑅1 | |
11 | rankdmr1 8837 | . . . . . 6 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
12 | r1ord3g 8815 | . . . . . 6 ⊢ (((rank‘𝐵) ∈ dom 𝑅1 ∧ (rank‘𝐴) ∈ dom 𝑅1) → ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)))) | |
13 | 10, 11, 12 | mp2an 710 | . . . . 5 ⊢ ((rank‘𝐵) ⊆ (rank‘𝐴) → (𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴))) |
14 | r1rankidb 8840 | . . . . . . 7 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → 𝐵 ⊆ (𝑅1‘(rank‘𝐵))) | |
15 | 14 | sselda 3744 | . . . . . 6 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐵))) |
16 | ssel 3738 | . . . . . 6 ⊢ ((𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)) → (𝐴 ∈ (𝑅1‘(rank‘𝐵)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) | |
17 | 15, 16 | syl5com 31 | . . . . 5 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ((𝑅1‘(rank‘𝐵)) ⊆ (𝑅1‘(rank‘𝐴)) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
18 | 13, 17 | syl5 34 | . . . 4 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → ((rank‘𝐵) ⊆ (rank‘𝐴) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
19 | 9, 18 | syl5bir 233 | . . 3 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → (¬ (rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ (𝑅1‘(rank‘𝐴)))) |
20 | 5, 19 | mt3d 140 | . 2 ⊢ ((𝐵 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) |
21 | 20 | ex 449 | 1 ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ⊆ wss 3715 ∪ cuni 4588 dom cdm 5266 “ cima 5269 Oncon0 5884 ‘cfv 6049 𝑅1cr1 8798 rankcrnk 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-r1 8800 df-rank 8801 |
This theorem is referenced by: wfelirr 8861 rankval3b 8862 rankel 8875 rankunb 8886 rankuni2b 8889 rankcf 9791 |
Copyright terms: Public domain | W3C validator |