MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankdmr1 Structured version   Visualization version   GIF version

Theorem rankdmr1 8624
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankdmr1 (rank‘𝐴) ∈ dom 𝑅1

Proof of Theorem rankdmr1
StepHypRef Expression
1 rankidb 8623 . . . 4 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
2 elfvdm 6187 . . . 4 (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1)
31, 2syl 17 . . 3 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1)
4 r1funlim 8589 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
54simpri 478 . . . 4 Lim dom 𝑅1
6 limsuc 7011 . . . 4 (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1))
75, 6ax-mp 5 . . 3 ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)
83, 7sylibr 224 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1)
9 rankvaln 8622 . . 3 𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
10 limomss 7032 . . . . 5 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
115, 10ax-mp 5 . . . 4 ω ⊆ dom 𝑅1
12 peano1 7047 . . . 4 ∅ ∈ ω
1311, 12sselii 3585 . . 3 ∅ ∈ dom 𝑅1
149, 13syl6eqel 2706 . 2 𝐴 (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1)
158, 14pm2.61i 176 1 (rank‘𝐴) ∈ dom 𝑅1
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wcel 1987  wss 3560  c0 3897   cuni 4409  dom cdm 5084  cima 5087  Oncon0 5692  Lim wlim 5693  suc csuc 5694  Fun wfun 5851  cfv 5857  ωcom 7027  𝑅1cr1 8585  rankcrnk 8586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-r1 8587  df-rank 8588
This theorem is referenced by:  r1rankidb  8627  pwwf  8630  unwf  8633  uniwf  8642  rankr1c  8644  rankelb  8647  rankval3b  8649  rankonid  8652  rankssb  8671  rankr1id  8685
  Copyright terms: Public domain W3C validator