MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramubcl Structured version   Visualization version   GIF version

Theorem ramubcl 15945
Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
ramubcl (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem ramubcl
StepHypRef Expression
1 nn0re 11514 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2 ltpnf 12168 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 < +∞)
3 rexr 10298 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10305 . . . . . . . 8 +∞ ∈ ℝ*
5 xrltnle 10318 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴))
63, 4, 5sylancl 697 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴))
72, 6mpbid 222 . . . . . 6 (𝐴 ∈ ℝ → ¬ +∞ ≤ 𝐴)
81, 7syl 17 . . . . 5 (𝐴 ∈ ℕ0 → ¬ +∞ ≤ 𝐴)
98ad2antrl 766 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ +∞ ≤ 𝐴)
10 simprr 813 . . . . 5 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ≤ 𝐴)
11 breq1 4808 . . . . 5 ((𝑀 Ramsey 𝐹) = +∞ → ((𝑀 Ramsey 𝐹) ≤ 𝐴 ↔ +∞ ≤ 𝐴))
1210, 11syl5ibcom 235 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) = +∞ → +∞ ≤ 𝐴))
139, 12mtod 189 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) = +∞)
14 elsni 4339 . . 3 ((𝑀 Ramsey 𝐹) ∈ {+∞} → (𝑀 Ramsey 𝐹) = +∞)
1513, 14nsyl 135 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ¬ (𝑀 Ramsey 𝐹) ∈ {+∞})
16 ramcl2 15943 . . . . 5 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
1716adantr 472 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}))
18 elun 3897 . . . 4 ((𝑀 Ramsey 𝐹) ∈ (ℕ0 ∪ {+∞}) ↔ ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞}))
1917, 18sylib 208 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → ((𝑀 Ramsey 𝐹) ∈ ℕ0 ∨ (𝑀 Ramsey 𝐹) ∈ {+∞}))
2019ord 391 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (¬ (𝑀 Ramsey 𝐹) ∈ ℕ0 → (𝑀 Ramsey 𝐹) ∈ {+∞}))
2115, 20mt3d 140 1 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝐴 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝐴)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2140  cun 3714  {csn 4322   class class class wbr 4805  wf 6046  (class class class)co 6815  cr 10148  +∞cpnf 10284  *cxr 10286   < clt 10287  cle 10288  0cn0 11505   Ramsey cram 15926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-ram 15928
This theorem is referenced by:  ramlb  15946  0ram  15947  ram0  15949  ramz2  15951  ramcl  15956
  Copyright terms: Public domain W3C validator