![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raluz2 | Structured version Visualization version GIF version |
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
raluz2 | ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 11893 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) | |
2 | 3anass 1079 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
3 | 1, 2 | bitri 264 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) |
4 | 3 | imbi1i 338 | . . . 4 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑)) |
5 | impexp 437 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑))) | |
6 | impexp 437 | . . . . . . 7 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) | |
7 | 6 | imbi2i 325 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑)) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
8 | 5, 7 | bitri 264 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
9 | bi2.04 375 | . . . . 5 ⊢ ((𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) | |
10 | 8, 9 | bitri 264 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛)) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
11 | 4, 10 | bitri 264 | . . 3 ⊢ ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
12 | 11 | ralbii2 3126 | . 2 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) |
13 | r19.21v 3108 | . 2 ⊢ (∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)) ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | |
14 | 12, 13 | bitri 264 | 1 ⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 ∈ wcel 2144 ∀wral 3060 class class class wbr 4784 ‘cfv 6031 ≤ cle 10276 ℤcz 11578 ℤ≥cuz 11887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-cnex 10193 ax-resscn 10194 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6795 df-neg 10470 df-z 11579 df-uz 11888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |