![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralun | Structured version Visualization version GIF version |
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ralun | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunb 3937 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
2 | 1 | biimpri 218 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wral 3050 ∪ cun 3713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-v 3342 df-un 3720 |
This theorem is referenced by: ac6sfi 8371 frfi 8372 fpwwe2lem13 9676 modfsummod 14745 drsdirfi 17159 lbsextlem4 19383 fbun 21865 filconn 21908 cnmpt2pc 22948 chtub 25157 prsiga 30524 finixpnum 33725 poimirlem31 33771 poimirlem32 33772 kelac1 38153 |
Copyright terms: Public domain | W3C validator |