![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralsng | Structured version Visualization version GIF version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralsng | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsnsg 4358 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | ralsng.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3607 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 1, 3 | bitrd 268 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2137 ∀wral 3048 [wsbc 3574 {csn 4319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-v 3340 df-sbc 3575 df-sn 4320 |
This theorem is referenced by: 2ralsng 4362 ralsn 4364 ralprg 4376 raltpg 4378 ralunsn 4572 iinxsng 4750 frirr 5241 posn 5342 frsn 5344 f12dfv 6690 ranksnb 8861 mgm1 17456 sgrp1 17492 mnd1 17530 grp1 17721 cntzsnval 17955 abl1 18467 srgbinomlem4 18741 ring1 18800 mat1dimmul 20482 ufileu 21922 istrkg3ld 25557 1hevtxdg0 26609 wlkp1lem8 26785 wwlksnext 27009 wwlksext2clwwlk 27185 wwlksext2clwwlkOLD 27186 dfconngr1 27338 1conngr 27344 frgr1v 27423 poimirlem26 33746 poimirlem27 33747 poimirlem31 33751 zlidlring 42436 linds0 42762 snlindsntor 42768 lmod1 42789 |
Copyright terms: Public domain | W3C validator |