![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version |
Description: Convert a quantification over a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
Ref | Expression |
---|---|
ralsn.1 | ⊢ 𝐴 ∈ V |
ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ralsng 4362 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 {csn 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-v 3342 df-sbc 3577 df-sn 4322 |
This theorem is referenced by: elixpsn 8113 frfi 8370 dffi3 8502 fseqenlem1 9037 fpwwe2lem13 9656 hashbc 13429 hashf1lem1 13431 eqs1 13583 cshw1 13768 rpnnen2lem11 15152 drsdirfi 17139 0subg 17820 efgsp1 18350 dprd2da 18641 lbsextlem4 19363 ply1coe 19868 mat0dimcrng 20478 txkgen 21657 xkoinjcn 21692 isufil2 21913 ust0 22224 prdsxmetlem 22374 prdsbl 22497 finiunmbl 23512 xrlimcnp 24894 chtub 25136 2sqlem10 25352 dchrisum0flb 25398 pntpbnd1 25474 usgr1e 26336 nbgr2vtx1edg 26445 nbuhgr2vtx1edgb 26447 wlkl1loop 26744 crctcshwlkn0lem7 26919 2pthdlem1 27050 rusgrnumwwlkl1 27090 clwwlkccatlem 27112 clwwlkn2 27173 clwwlkel 27175 clwwlkwwlksb 27184 1wlkdlem4 27292 h1deoi 28717 bnj149 31252 subfacp1lem5 31473 cvmlift2lem1 31591 cvmlift2lem12 31603 conway 32216 etasslt 32226 slerec 32229 lindsenlbs 33717 poimirlem28 33750 poimirlem32 33754 heibor1lem 33921 |
Copyright terms: Public domain | W3C validator |