MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrot3 Structured version   Visualization version   GIF version

Theorem ralrot3 3250
Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.)
Assertion
Ref Expression
ralrot3 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑥,𝑦,𝐶   𝑥,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑧)

Proof of Theorem ralrot3
StepHypRef Expression
1 ralcom 3246 . . 3 (∀𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵 𝜑)
21ralbii 3129 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑥𝐴𝑧𝐶𝑦𝐵 𝜑)
3 ralcom 3246 . 2 (∀𝑥𝐴𝑧𝐶𝑦𝐵 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 264 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clel 2767  df-nfc 2902  df-ral 3066
This theorem is referenced by:  rmodislmodlem  19140  rmodislmod  19141
  Copyright terms: Public domain W3C validator