![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrnmpt | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
ralrnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
ralrnmpt.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralrnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmpt.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fnmpt 6181 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
3 | dfsbcq 3578 | . . . . 5 ⊢ (𝑤 = (𝐹‘𝑧) → ([𝑤 / 𝑦]𝜓 ↔ [(𝐹‘𝑧) / 𝑦]𝜓)) | |
4 | 3 | ralrn 6526 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓)) |
6 | nfv 1992 | . . . . 5 ⊢ Ⅎ𝑤𝜓 | |
7 | nfsbc1v 3596 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑦]𝜓 | |
8 | sbceq1a 3587 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝜓 ↔ [𝑤 / 𝑦]𝜓)) | |
9 | 6, 7, 8 | cbvral 3306 | . . . 4 ⊢ (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓) |
10 | 9 | bicomi 214 | . . 3 ⊢ (∀𝑤 ∈ ran 𝐹[𝑤 / 𝑦]𝜓 ↔ ∀𝑦 ∈ ran 𝐹𝜓) |
11 | nfmpt1 4899 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
12 | 1, 11 | nfcxfr 2900 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
13 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
14 | 12, 13 | nffv 6360 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
15 | nfv 1992 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
16 | 14, 15 | nfsbc 3598 | . . . 4 ⊢ Ⅎ𝑥[(𝐹‘𝑧) / 𝑦]𝜓 |
17 | nfv 1992 | . . . 4 ⊢ Ⅎ𝑧[(𝐹‘𝑥) / 𝑦]𝜓 | |
18 | fveq2 6353 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
19 | 18 | sbceq1d 3581 | . . . 4 ⊢ (𝑧 = 𝑥 → ([(𝐹‘𝑧) / 𝑦]𝜓 ↔ [(𝐹‘𝑥) / 𝑦]𝜓)) |
20 | 16, 17, 19 | cbvral 3306 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 [(𝐹‘𝑧) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓) |
21 | 5, 10, 20 | 3bitr3g 302 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓)) |
22 | 1 | fvmpt2 6454 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝑥) = 𝐵) |
23 | 22 | sbceq1d 3581 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ [𝐵 / 𝑦]𝜓)) |
24 | ralrnmpt.2 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
25 | 24 | sbcieg 3609 | . . . . . 6 ⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
26 | 25 | adantl 473 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
27 | 23, 26 | bitrd 268 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
28 | 27 | ralimiaa 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒)) |
29 | ralbi 3206 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ([(𝐹‘𝑥) / 𝑦]𝜓 ↔ 𝜒) → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) | |
30 | 28, 29 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 [(𝐹‘𝑥) / 𝑦]𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
31 | 21, 30 | bitrd 268 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 [wsbc 3576 ↦ cmpt 4881 ran crn 5267 Fn wfn 6044 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: rexrnmpt 6533 ac6num 9513 gsumwspan 17604 dfod2 18201 ordtbaslem 21214 ordtrest2lem 21229 cncmp 21417 comppfsc 21557 ptpjopn 21637 ordthmeolem 21826 tsmsfbas 22152 tsmsf1o 22169 prdsxmetlem 22394 prdsbl 22517 metdsf 22872 metdsge 22873 minveclem1 23415 minveclem3b 23419 minveclem6 23425 mbflimsup 23652 xrlimcnp 24915 minvecolem1 28060 minvecolem5 28067 minvecolem6 28068 ordtrest2NEWlem 30298 cvmsss2 31584 fin2so 33727 prdsbnd 33923 rrnequiv 33965 ralrnmpt3 39991 |
Copyright terms: Public domain | W3C validator |